Abstract

Although aging-regulating pathways were discovered a few decades ago, it is not entirely clear how their activities are orchestrated, to govern lifespan and proteostasis at the organismal level. Here we utilized the nematode Caenorhabditis elegans to examine whether the alteration of aging, by reducing the activity of the Insulin/IGF signaling (IIS) cascade, affects protein SUMOylation. We found that IIS activity promotes the SUMOylation of the germline protein, CAR-1, thereby shortening lifespan and impairing proteostasis. In contrast, the expression of mutated CAR-1, that cannot be SUMOylated at residue 185, extends lifespan and enhances proteostasis. A mechanistic analysis indicated that CAR-1 mediates its aging-altering functions, at least partially, through the notch-like receptor glp-1. Our findings unveil a novel regulatory axis in which SUMOylation is utilized to integrate the aging-controlling functions of the IIS and of the germline and provide new insights into the roles of SUMOylation in the regulation of organismal aging.

Data availability

Mass Spectrometry data has been deposited at http://www.ebi.ac.uk/pride (Project accession: PXD010011).

The following data sets were generated

Article and author information

Author details

  1. Lorna Moll

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  2. Noa Roitenberg

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  3. Michal Bejerano-Sagie

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  4. Hana Boocholez

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  5. Filipa Carvalhal Marques

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  6. Yuli Volovik

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  7. Tayir Elami

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  8. Atif Ahmed Siddiqui

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  9. Danielle Grushko

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  10. Adi Biram

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6169-9861
  11. Bar Lampert

    Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  12. Hana Achache

    Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  13. Tommer Ravid

    Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  14. Yonatan B Tzur

    Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
    Competing interests
    The authors declare that no competing interests exist.
  15. Ehud Cohen

    Department of Biochemistry and Molecular Biology, The Hebrew University of Jerusalem, Jerusalem, Israel
    For correspondence
    ehudc@ekmd.huji.ac.il
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5552-7086

Funding

Israel Science Foundation (EC 981/16)

  • Hana Boocholez
  • Danielle Grushko
  • Ehud Cohen

Israel Science Foundation (YBT 2090/15)

  • Bar Lampert
  • Yonatan B Tzur

Israel Science Foundation (YBT 1283/15)

  • Bar Lampert
  • Yonatan B Tzur

European Research Council (EC 281010)

  • Lorna Moll
  • Noa Roitenberg
  • Michal Bejerano-Sagie
  • Filipa Carvalhal Marques
  • Yuli Volovik
  • Tayir Elami
  • Danielle Grushko
  • Ehud Cohen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Inna Slutsky, Tel Aviv University, Israel

Version history

  1. Received: May 24, 2018
  2. Accepted: November 6, 2018
  3. Accepted Manuscript published: November 7, 2018 (version 1)
  4. Version of Record published: December 3, 2018 (version 2)

Copyright

© 2018, Moll et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,399
    views
  • 450
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Lorna Moll
  2. Noa Roitenberg
  3. Michal Bejerano-Sagie
  4. Hana Boocholez
  5. Filipa Carvalhal Marques
  6. Yuli Volovik
  7. Tayir Elami
  8. Atif Ahmed Siddiqui
  9. Danielle Grushko
  10. Adi Biram
  11. Bar Lampert
  12. Hana Achache
  13. Tommer Ravid
  14. Yonatan B Tzur
  15. Ehud Cohen
(2018)
The Insulin/IGF signaling cascade modulates SUMOylation to regulate aging and proteostasis in C. elegans
eLife 7:e38635.
https://doi.org/10.7554/eLife.38635

Share this article

https://doi.org/10.7554/eLife.38635

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article Updated

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric acid type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    2. Immunology and Inflammation
    Kevin Portmann, Aline Linder, Klaus Eyer
    Research Article

    Cytokine polyfunctionality is a well-established concept in immune cells, especially T cells, and their ability to concurrently produce multiple cytokines has been associated with better immunological disease control and subsequent effectiveness during infection and disease. To date, only little is known about the secretion dynamics of those cells, masked by the widespread deployment of mainly time-integrated endpoint measurement techniques that do not easily differentiate between concurrent and sequential secretion. Here, we employed a single-cell microfluidic platform capable of resolving the secretion dynamics of individual PBMCs. To study the dynamics of poly-cytokine secretion, as well as the dynamics of concurrent and sequential polyfunctionality, we analyzed the response at different time points after ex vivo activation. First, we observed the simultaneous secretion of cytokines over the measurement time for most stimulants in a subpopulation of cells only. Second, polyfunctionality generally decreased with prolonged stimulation times and revealed no correlation with the concentration of secreted cytokines in response to stimulation. However, we observed a general trend towards higher cytokine secretion in polyfunctional cells, with their secretion dynamics being distinctly different from mono-cytokine-secreting cells. This study provided insights into the distinct secretion behavior of heterogenous cell populations after stimulation with well-described agents and such a system could provide a better understanding of various immune dynamics in therapy and disease.