α-actinin accounts for the bioactivity of actin preparations in inducing STAT target genes in Drosophila melanogaster

  1. Oliver Gordon
  2. Conor M Henry
  3. Naren Srinivasan
  4. Susan Ahrens
  5. Anna Franz
  6. Safia Deddouche
  7. Probir Chakravarty
  8. David Phillips
  9. Roger George
  10. Svend Kjaer
  11. David Frith
  12. Ambrosius P Snijders
  13. Rita S Valente
  14. Carolina J Simoes da Silva
  15. Luis Teixeira
  16. Barry Thompson
  17. Marc S Dionne
  18. Will Wood
  19. Caetano Reis e Sousa  Is a corresponding author
  1. The Francis Crick Institute, United Kingdom
  2. University of Bristol, United Kingdom
  3. Instituto Gulbenkian de Ciência, Portugal
  4. Imperial College London, United Kingdom
  5. University of Edinburgh, United Kingdom

Abstract

Damage-associated molecular patterns (DAMPs) are molecules exposed or released by dead cells that trigger or modulate immunity and tissue repair. In vertebrates, the cytoskeletal component F-actin is a DAMP specifically recognised by DNGR-1, an innate immune receptor. Previously we suggested that actin is also a DAMP in Drosophila melanogaster by inducing STAT-dependent (Srinivasan et al., 2016). Here, we revise that conclusion and report that α-actinin is far more potent than actin at inducing the same STAT response and can be found in trace amounts in actin preparations. Recombinant expression of actin or α-actinin in bacteria demonstrated that only α-actinin could drive the expression of STAT target genes in Drosophila. The response to injected α-actinin required the same signalling cascade that we had identified in our previous work using actin preparations. Taken together, these data indicate that α-actinin rather than actin drives STAT activation when injected into Drosophila.

Data availability

Data generated or analysed during this study are included in the manuscript. Mass spectrometry data were uploaded as supporting file.

Article and author information

Author details

  1. Oliver Gordon

    Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Conor M Henry

    Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Naren Srinivasan

    Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Susan Ahrens

    Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Anna Franz

    Department of Biochemistry, Biomedical Sciences, University of Bristol, Bristol, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Safia Deddouche

    Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Probir Chakravarty

    Bioinformatics and Biostatistics Facility, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. David Phillips

    Genomics-Equipment Park, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Roger George

    The Structural Biology Science Technology Platform, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  10. Svend Kjaer

    Structural Biology, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  11. David Frith

    Proteomics, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  12. Ambrosius P Snijders

    Proteomics, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  13. Rita S Valente

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
  14. Carolina J Simoes da Silva

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  15. Luis Teixeira

    Instituto Gulbenkian de Ciência, Oeiras, Portugal
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8326-6645
  16. Barry Thompson

    Epithelial Biology Laboratory, The Francis Crick Institute, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0103-040X
  17. Marc S Dionne

    Department of Life Sciences, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8283-1750
  18. Will Wood

    MRC Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  19. Caetano Reis e Sousa

    Immunobiology Laboratory, The Francis Crick Institute, London, United Kingdom
    For correspondence
    Caetano@crick.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7392-2119

Funding

Francis Crick Institute (FC001136)

  • Caetano Reis e Sousa

Wellcome Trust (WT106973MA)

  • Caetano Reis e Sousa

Federation of European Biochemical Societies

  • Conor M Henry

Fundação para a Ciencia e Tecnologia (PTDC/BEX- GMG/3128/2014)

  • Luis Teixeira

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Gordon et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,559
    views
  • 205
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Oliver Gordon
  2. Conor M Henry
  3. Naren Srinivasan
  4. Susan Ahrens
  5. Anna Franz
  6. Safia Deddouche
  7. Probir Chakravarty
  8. David Phillips
  9. Roger George
  10. Svend Kjaer
  11. David Frith
  12. Ambrosius P Snijders
  13. Rita S Valente
  14. Carolina J Simoes da Silva
  15. Luis Teixeira
  16. Barry Thompson
  17. Marc S Dionne
  18. Will Wood
  19. Caetano Reis e Sousa
(2018)
α-actinin accounts for the bioactivity of actin preparations in inducing STAT target genes in Drosophila melanogaster
eLife 7:e38636.
https://doi.org/10.7554/eLife.38636

Share this article

https://doi.org/10.7554/eLife.38636

Further reading

    1. Immunology and Inflammation
    Troy Burtchett, Neal Hammer
    Insight

    Specific host factors, such as immune cell activity, sex hormones and microbiota composition, influence the ability of Staphylococcus aureus bacteria to colonize the gut of mice.

    1. Immunology and Inflammation
    2. Neuroscience
    Jeremy M Shea, Saul A Villeda
    Research Article

    During aging, microglia – the resident macrophages of the brain – exhibit altered phenotypes and contribute to age-related neuroinflammation. While numerous hallmarks of age-related microglia have been elucidated, the progression from homeostasis to dysfunction during the aging process remains unresolved. To bridge this gap in knowledge, we undertook complementary cellular and molecular analyses of microglia in the mouse hippocampus across the adult lifespan and in the experimental aging model of heterochronic parabiosis. Single-cell RNA-Seq and pseudotime analysis revealed age-related transcriptional heterogeneity in hippocampal microglia and identified intermediate states of microglial aging that also emerge following heterochronic parabiosis. We tested the functionality of intermediate stress response states via TGFβ1 and translational states using pharmacological approaches in vitro to reveal their modulation of the progression to an activated state. Furthermore, we utilized single-cell RNA-Seq in conjunction with in vivo adult microglia-specific Tgfb1 conditional genetic knockout mouse models to demonstrate that microglia advancement through intermediate aging states drives transcriptional inflammatory activation and hippocampal-dependent cognitive decline.