A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement

Abstract

A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of 'missing-self' recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xiaoli Wang

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Sytse J Piersma

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Nelson A Christopher

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Ya-Nan Dia

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Ted Christensen

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Eric Lazear

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Liping Yang

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  8. Marjolein Sluijter

    Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  9. Thorbald van Hall

    Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9115-558X
  10. Ted H Hansen

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  11. Wayne M Yokoyama

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    Wayne M Yokoyama, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264
  12. Daved H Fremont

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    For correspondence
    fremont@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8544-2689

Funding

National Institute of Allergy and Infectious Diseases (R01-AI109687)

  • Daved H Fremont

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael L Dustin, University of Oxford, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#08-133) of the University of Arizona. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Minnesota (Permit Number: 27-2956). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Version history

  1. Received: May 25, 2018
  2. Accepted: December 20, 2018
  3. Accepted Manuscript published: December 21, 2018 (version 1)
  4. Version of Record published: January 4, 2019 (version 2)

Copyright

© 2018, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,513
    views
  • 251
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoli Wang
  2. Sytse J Piersma
  3. Nelson A Christopher
  4. Ya-Nan Dia
  5. Ted Christensen
  6. Eric Lazear
  7. Liping Yang
  8. Marjolein Sluijter
  9. Thorbald van Hall
  10. Ted H Hansen
  11. Wayne M Yokoyama
  12. Daved H Fremont
(2018)
A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement
eLife 7:e38667.
https://doi.org/10.7554/eLife.38667

Share this article

https://doi.org/10.7554/eLife.38667

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Joanna C Porter, Jamie Inshaw ... Venizelos Papayannopoulos
    Research Article

    Background:

    Prinflammatory extracellular chromatin from neutrophil extracellular traps (NETs) and other cellular sources is found in COVID-19 patients and may promote pathology. We determined whether pulmonary administration of the endonuclease dornase alfa reduced systemic inflammation by clearing extracellular chromatin.

    Methods:

    Eligible patients were randomized (3:1) to the best available care including dexamethasone (R-BAC) or to BAC with twice-daily nebulized dornase alfa (R-BAC + DA) for seven days or until discharge. A 2:1 ratio of matched contemporary controls (CC-BAC) provided additional comparators. The primary endpoint was the improvement in C-reactive protein (CRP) over time, analyzed using a repeated-measures mixed model, adjusted for baseline factors.

    Results:

    We recruited 39 evaluable participants: 30 randomized to dornase alfa (R-BAC +DA), 9 randomized to BAC (R-BAC), and included 60 CC-BAC participants. Dornase alfa was well tolerated and reduced CRP by 33% compared to the combined BAC groups (T-BAC). Least squares (LS) mean post-dexamethasone CRP fell from 101.9 mg/L to 23.23 mg/L in R-BAC +DA participants versus a 99.5 mg/L to 34.82 mg/L reduction in the T-BAC group at 7 days; p=0.01. The anti-inflammatory effect of dornase alfa was further confirmed with subgroup and sensitivity analyses on randomised participants only, mitigating potential biases associated with the use of CC-BAC participants. Dornase alfa increased live discharge rates by 63% (HR 1.63, 95% CI 1.01–2.61, p=0.03), increased lymphocyte counts (LS mean: 1.08 vs 0.87, p=0.02) and reduced circulating cf-DNA and the coagulopathy marker D-dimer (LS mean: 570.78 vs 1656.96 μg/mL, p=0.004).

    Conclusions:

    Dornase alfa reduces pathogenic inflammation in COVID-19 pneumonia, demonstrating the benefit of cost-effective therapies that target extracellular chromatin.

    Funding:

    LifeArc, Breathing Matters, The Francis Crick Institute (CRUK, Medical Research Council, Wellcome Trust).

    Clinical trial number:

    NCT04359654.

    1. Immunology and Inflammation
    Hee Young Kim, Yeon Jun Kang ... Won-Woo Lee
    Research Article

    Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.