A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement

Abstract

A recurrent theme in viral immune evasion is the sabotage of MHC-I antigen presentation, which brings virus the concomitant issue of 'missing-self' recognition by NK cells that use inhibitory receptors to detect surface MHC-I proteins. Here we report that rodent herpesvirus Peru (RHVP) encodes a Qa-1 like protein (pQa-1) via RNA splicing to counteract NK activation. While pQa-1 surface expression is stabilized by the same canonical peptides presented by murine Qa-1, pQa-1 is GPI-anchored and resistant to the activity of RHVP pK3, a ubiquitin ligase that targets MHC-I for degradation. pQa-1 tetramer staining indicates that it recognizes CD94/NKG2A receptors. Consistently, pQa-1 selectively inhibits NKG2A+ NK cells and expression of pQa-1 can protect tumor cells from NK control in vivo. Collectively these findings reveal an innovative NK evasion strategy wherein RHVP encodes a modified Qa-1 mimic refractory to MHC-I sabotage and capable of specifically engaging inhibitory receptors to circumvent NK activation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Xiaoli Wang

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  2. Sytse J Piersma

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  3. Nelson A Christopher

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  4. Ya-Nan Dia

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  5. Ted Christensen

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  6. Eric Lazear

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  7. Liping Yang

    Division of Rheumatology, Department of Medicine, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  8. Marjolein Sluijter

    Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
  9. Thorbald van Hall

    Department of Medical Oncology, Leiden University Medical Center, Leiden, Netherlands
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9115-558X
  10. Ted H Hansen

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    No competing interests declared.
  11. Wayne M Yokoyama

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    Competing interests
    Wayne M Yokoyama, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0566-7264
  12. Daved H Fremont

    Department of Pathology and Immunology, Washington University School of Medicine, St Louis, United States
    For correspondence
    fremont@wustl.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8544-2689

Funding

National Institute of Allergy and Infectious Diseases (R01-AI109687)

  • Daved H Fremont

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health. All of the animals were handled according to approved institutional animal care and use committee (IACUC) protocols (#08-133) of the University of Arizona. The protocol was approved by the Committee on the Ethics of Animal Experiments of the University of Minnesota (Permit Number: 27-2956). All surgery was performed under sodium pentobarbital anesthesia, and every effort was made to minimize suffering.

Copyright

© 2018, Wang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,538
    views
  • 252
    downloads
  • 7
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Xiaoli Wang
  2. Sytse J Piersma
  3. Nelson A Christopher
  4. Ya-Nan Dia
  5. Ted Christensen
  6. Eric Lazear
  7. Liping Yang
  8. Marjolein Sluijter
  9. Thorbald van Hall
  10. Ted H Hansen
  11. Wayne M Yokoyama
  12. Daved H Fremont
(2018)
A herpesvirus encoded Qa-1 mimic inhibits natural killer cell cytotoxicity through CD94/NKG2A receptor engagement
eLife 7:e38667.
https://doi.org/10.7554/eLife.38667

Share this article

https://doi.org/10.7554/eLife.38667

Further reading

    1. Immunology and Inflammation
    Aryeh Solomon, Noa Bossel Ben-Moshe ... Roi Avraham
    Research Article

    Trained immunity (TI) is the process wherein innate immune cells gain functional memory upon exposure to specific ligands or pathogens, leading to augmented inflammatory responses and pathogen clearance upon secondary exposure. While the differentiation of hematopoietic stem cells (HSCs) and reprogramming of bone marrow (BM) progenitors are well-established mechanisms underpinning durable TI protection, remodeling of the cellular architecture within the tissue during TI remains underexplored. Here, we study the effects of peritoneal Bacillus Calmette–Guérin (BCG) administration to find TI-mediated protection in the spleen against a subsequent heterologous infection by the Gram-negative pathogen Salmonella Typhimurium (S.Tm). Utilizing single cell RNA-sequencing and flow cytometry, we discerned STAT1-regulated genes in TI-associated resident and recruited splenic myeloid populations. The temporal dynamics of TI were further elucidated, revealing both early and delayed myeloid subsets with time-dependent, cell-type-specific STAT1 signatures. Using lineage tracing, we find that tissue-resident red pulp macrophages (RPM), initially depleted by BCG exposure, are restored from both tissue-trained, self-renewing macrophages and from bone marrow-derived progenitors, fostering long lasting local defense. Early inhibition of STAT1 activation, using specific JAK-STAT inhibitors, reduces both RPM loss and recruitment of trained monocytes. Our study suggests a temporal window soon after BCG vaccination, in which STAT1-dependent activation of long-lived resident cells in the tissue mediates localized protection.

    1. Immunology and Inflammation
    Yalan Jiang, Pingping He ... Xiaoou Shan
    Research Article

    Type 1 diabetes mellitus (T1DM), known as insulin-dependent diabetes mellitus, is characterized by persistent hyperglycemia resulting from damage to the pancreatic β cells and an absolute deficiency of insulin, leading to multi-organ involvement and a poor prognosis. The progression of T1DM is significantly influenced by oxidative stress and apoptosis. The natural compound eugenol (EUG) possesses anti-inflammatory, anti-oxidant, and anti-apoptotic properties. However, the potential effects of EUG on T1DM had not been investigated. In this study, we established the streptozotocin (STZ)-induced T1DM mouse model in vivo and STZ-induced pancreatic β cell MIN6 cell model in vitro to investigate the protective effects of EUG on T1DM, and tried to elucidate its potential mechanism. Our findings demonstrated that the intervention of EUG could effectively induce the activation of nuclear factor E2-related factor 2 (NRF2), leading to an up-regulation in the expressions of downstream proteins NQO1 and HMOX1, which are regulated by NRF2. Moreover, this intervention exhibited a significant amelioration in pancreatic β cell damage associated with T1DM, accompanied by an elevation in insulin secretion and a reduction in the expression levels of apoptosis and oxidative stress-related markers. Furthermore, ML385, an NRF2 inhibitor, reversed these effects of EUG. The present study suggested that EUG exerted protective effects on pancreatic β cells in T1DM by attenuating apoptosis and oxidative stress through the activation of the NRF2 signaling pathway. Consequently, EUG holds great promise as a potential therapeutic candidate for T1DM.