Screening of candidate substrates and coupling ions of transporters by thermostability shift assays

  1. Homa Majd
  2. Martin S King
  3. Shane M Palmer
  4. Anthony C Smith
  5. Liam DH Elbourne
  6. Ian T Paulsen
  7. David Sharples
  8. Peter JF Henderson
  9. Edmund RS Kunji  Is a corresponding author
  1. University of Cambridge, United Kingdom
  2. Macquarie University, Australia
  3. University of Leeds, United Kingdom

Abstract

Substrates of most transport proteins have not been identified, limiting our understanding of their role in physiology and disease. Traditional identification methods use transport assays with radioactive compounds, but they are technically challenging and many compounds are unavailable in radioactive form or are prohibitively expensive, precluding large-scale trials. Here, we present a high-throughput screening method that can identify candidate substrates from libraries of unlabeled compounds. The assay is based on the principle that transport proteins recognize substrates through specific interactions, which lead to enhanced stabilization of the transporter population in thermostability shift assays. Representatives of three different transporter (super)families were tested, which differ in structure as well as transport and ion coupling mechanisms. In each case, the substrates were identified correctly from a large set of chemically related compounds, including stereo-isoforms. In some cases, stabilization by substrate binding was enhanced further by ions, providing testable hypotheses on energy coupling mechanisms.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided in Dryad.

The following data sets were generated

Article and author information

Author details

  1. Homa Majd

    Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  2. Martin S King

    Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Shane M Palmer

    Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Anthony C Smith

    Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Liam DH Elbourne

    Department of Molecular Sciences, Macquarie University, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  6. Ian T Paulsen

    Department of Molecular Sciences, Macquarie University, Sydney, Australia
    Competing interests
    The authors declare that no competing interests exist.
  7. David Sharples

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  8. Peter JF Henderson

    Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Edmund RS Kunji

    Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    ek@mrc-mbu.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0610-4500

Funding

Medical Research Council (MC_UU_00015/1)

  • Homa Majd
  • Martin S King
  • Shane M Palmer
  • Anthony C Smith
  • Edmund RS Kunji

Cambridge Commonwealth, European and International Trust

  • Homa Majd

Leverhulme Trust (EM-2014 -045)

  • Peter JF Henderson

Biotechnology and Biological Sciences Research Council (MPSI BBS/B/14418)

  • David Sharples

Wellcome (JIF 062164/Z/00/Z)

  • David Sharples

University of Leeds

  • David Sharples

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Majd et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,073
    views
  • 631
    downloads
  • 52
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Homa Majd
  2. Martin S King
  3. Shane M Palmer
  4. Anthony C Smith
  5. Liam DH Elbourne
  6. Ian T Paulsen
  7. David Sharples
  8. Peter JF Henderson
  9. Edmund RS Kunji
(2018)
Screening of candidate substrates and coupling ions of transporters by thermostability shift assays
eLife 7:e38821.
https://doi.org/10.7554/eLife.38821

Share this article

https://doi.org/10.7554/eLife.38821

Further reading

    1. Structural Biology and Molecular Biophysics
    Yuanyuan Wang, Fan Xu ... Yongning He
    Research Article

    SCARF1 (scavenger receptor class F member 1, SREC-1 or SR-F1) is a type I transmembrane protein that recognizes multiple endogenous and exogenous ligands such as modified low-density lipoproteins (LDLs) and is important for maintaining homeostasis and immunity. But the structural information and the mechanisms of ligand recognition of SCARF1 are largely unavailable. Here, we solve the crystal structures of the N-terminal fragments of human SCARF1, which show that SCARF1 forms homodimers and its epidermal growth factor (EGF)-like domains adopt a long-curved conformation. Then, we examine the interactions of SCARF1 with lipoproteins and are able to identify a region on SCARF1 for recognizing modified LDLs. The mutagenesis data show that the positively charged residues in the region are crucial for the interaction of SCARF1 with modified LDLs, which is confirmed by making chimeric molecules of SCARF1 and SCARF2. In addition, teichoic acids, a cell wall polymer expressed on the surface of gram-positive bacteria, are able to inhibit the interactions of modified LDLs with SCARF1, suggesting the ligand binding sites of SCARF1 might be shared for some of its scavenging targets. Overall, these results provide mechanistic insights into SCARF1 and its interactions with the ligands, which are important for understanding its physiological roles in homeostasis and the related diseases.

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Jie Luo, Jeff Ranish
    Tools and Resources

    Dynamic conformational and structural changes in proteins and protein complexes play a central and ubiquitous role in the regulation of protein function, yet it is very challenging to study these changes, especially for large protein complexes, under physiological conditions. Here, we introduce a novel isobaric crosslinker, Qlinker, for studying conformational and structural changes in proteins and protein complexes using quantitative crosslinking mass spectrometry. Qlinkers are small and simple, amine-reactive molecules with an optimal extended distance of ~10 Å, which use MS2 reporter ions for relative quantification of Qlinker-modified peptides derived from different samples. We synthesized the 2-plex Q2linker and showed that the Q2linker can provide quantitative crosslinking data that pinpoints key conformational and structural changes in biosensors, binary and ternary complexes composed of the general transcription factors TBP, TFIIA, and TFIIB, and RNA polymerase II complexes.