Structural principles of SNARE complex recognition by the AAA+ protein NSF

  1. K Ian White
  2. Minglei Zhao
  3. Ucheor B Choi
  4. Richard A Pfuetzner
  5. Axel T Brunger  Is a corresponding author
  1. Stanford University, United States
  2. University of Chicago, United States

Abstract

The recycling of SNARE proteins following complex formation and membrane fusion is an essential process in eukaryotic trafficking. A highly conserved AAA+ protein, NSF (N-ethylmaleimide sensitive factor) and an adaptor protein, SNAP (soluble NSF attachment protein), disassembles the SNARE complex. We report electron-cryomicroscopy structures of the complex of NSF, αSNAP, and the full-length soluble neuronal SNARE complex (composed of syntaxin-1A, synaptobrevin-2, SNAP-25A) in the presence of ATP under non-hydrolyzing conditions at ~3.9 Å resolution. These structures reveal electrostatic interactions by which two αSNAP molecules interface with a specific surface of the SNARE complex. This interaction positions the SNAREs such that the 15 N-terminal residues of SNAP-25A are loaded into the D1 ring pore of NSF via a spiral pattern of interactions between a conserved tyrosine NSF residue and SNAP-25A backbone atoms. This loading process likely precedes ATP hydrolysis. Subsequent ATP hydrolysis then drives complete disassembly.

Data availability

The coordinates and corresponding EM density maps have been deposited in the PDB and EMDB, respectively.

The following data sets were generated

Article and author information

Author details

  1. K Ian White

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  2. Minglei Zhao

    Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, United States
    Competing interests
    No competing interests declared.
  3. Ucheor B Choi

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  4. Richard A Pfuetzner

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    Competing interests
    No competing interests declared.
  5. Axel T Brunger

    Department of Molecular and Cellular Physiology, Stanford University, Stanford, United States
    For correspondence
    brunger@stanford.edu
    Competing interests
    Axel T Brunger, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5121-2036

Funding

Howard Hughes Medical Institute

  • Axel T Brunger

National Institutes of Health

  • Axel T Brunger

Helen Hay Whitney Foundation

  • K Ian White

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Sriram Subramaniam, National Cancer Institute, United States

Publication history

  1. Received: June 4, 2018
  2. Accepted: August 26, 2018
  3. Accepted Manuscript published: September 10, 2018 (version 1)
  4. Accepted Manuscript updated: September 12, 2018 (version 2)
  5. Version of Record published: September 27, 2018 (version 3)

Copyright

© 2018, White et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,395
    Page views
  • 613
    Downloads
  • 46
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. K Ian White
  2. Minglei Zhao
  3. Ucheor B Choi
  4. Richard A Pfuetzner
  5. Axel T Brunger
(2018)
Structural principles of SNARE complex recognition by the AAA+ protein NSF
eLife 7:e38888.
https://doi.org/10.7554/eLife.38888