Abstract

The innate immune sensor RIG-I detects cytosolic viral RNA and requires a conformational change caused by both ATP and RNA binding to induce an active signalling state and to trigger an immune response. Previously, we showed that ATP hydrolysis removes RIG-I from lower affinity self-RNAs (Lässig et al., 2015), revealing how ATP turnover helps RIG‑I distinguish viral from self-RNA and explaining why a mutation in a motif that slows down ATP hydrolysis causes the autoimmune disease Singleton-Merten syndrome (SMS). Here we show that a different, mechanistically unexplained SMS variant, C268F, localised in the ATP binding P-loop, can signal independently of ATP but still dependent on RNA. The structure in complex with dsRNA reveals that C268F helps induce a similar structural conformation in RIG-I than ATP. Our results uncover an unexpected mechanism how a mutation in a P-loop ATPase can induce a gain-of-function ATP state in the absence of ATP.

Data availability

Diffraction data have been deposited in PDB under the accession code 6GPG.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Charlotte Lässig

    Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Katja Lammens

    Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Jacob Lucián Gorenflos López

    Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Sebastian Michalski

    Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Olga Fettscher

    Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Karl-Peter Hopfner

    Gene Center and Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
    For correspondence
    hopfner@genzentrum.lmu.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4528-8357

Funding

Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst (BioSysNet)

  • Karl-Peter Hopfner

German Excellence Initiative (CIPSM)

  • Karl-Peter Hopfner

Deutsche Forschungsgemeinschaft (HO2489/8)

  • Karl-Peter Hopfner

Deutsche Forschungsgemeinschaft (CRC1054 project B02)

  • Katja Lammens

Deutsche Forschungsgemeinschaft (CRC/TRR 237)

  • Karl-Peter Hopfner

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Stephen C Kowalczykowski, University of California, Davis, United States

Version history

  1. Received: June 7, 2018
  2. Accepted: July 24, 2018
  3. Accepted Manuscript published: July 26, 2018 (version 1)
  4. Version of Record published: August 10, 2018 (version 2)

Copyright

© 2018, Lässig et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,032
    Page views
  • 363
    Downloads
  • 25
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Charlotte Lässig
  2. Katja Lammens
  3. Jacob Lucián Gorenflos López
  4. Sebastian Michalski
  5. Olga Fettscher
  6. Karl-Peter Hopfner
(2018)
Unified mechanisms for self-RNA recognition by RIG-I Singleton-Merten syndrome variants
eLife 7:e38958.
https://doi.org/10.7554/eLife.38958

Share this article

https://doi.org/10.7554/eLife.38958

Further reading

    1. Immunology and Inflammation
    Toyoshi Yanagihara, Kentaro Hata ... Isamu Okamoto
    Research Article

    Anticancer treatments can result in various adverse effects, including infections due to immune suppression/dysregulation and drug-induced toxicity in the lung. One of the major opportunistic infections is Pneumocystis jirovecii pneumonia (PCP), which can cause severe respiratory complications and high mortality rates. Cytotoxic drugs and immune-checkpoint inhibitors (ICIs) can induce interstitial lung diseases (ILDs). Nonetheless, the differentiation of these diseases can be difficult, and the pathogenic mechanisms of such diseases are not yet fully understood. To better comprehend the immunophenotypes, we conducted an exploratory mass cytometry analysis of immune cell subsets in bronchoalveolar lavage fluid from patients with PCP, cytotoxic drug-induced ILD (DI-ILD), and ICI-associated ILD (ICI-ILD) using two panels containing 64 markers. In PCP, we observed an expansion of the CD16+ T cell population, with the highest CD16+ T proportion in a fatal case. In ICI-ILD, we found an increase in CD57+ CD8+ T cells expressing immune checkpoints (TIGIT+ LAG3+ TIM-3+ PD-1+), FCRL5+ B cells, and CCR2+ CCR5+ CD14+ monocytes. These findings uncover the diverse immunophenotypes and possible pathomechanisms of cancer treatment-related pneumonitis.

    1. Developmental Biology
    2. Immunology and Inflammation
    Amir Hossein Kayvanjoo, Iva Splichalova ... Elvira Mass
    Research Article Updated

    During embryogenesis, the fetal liver becomes the main hematopoietic organ, where stem and progenitor cells as well as immature and mature immune cells form an intricate cellular network. Hematopoietic stem cells (HSCs) reside in a specialized niche, which is essential for their proliferation and differentiation. However, the cellular and molecular determinants contributing to this fetal HSC niche remain largely unknown. Macrophages are the first differentiated hematopoietic cells found in the developing liver, where they are important for fetal erythropoiesis by promoting erythrocyte maturation and phagocytosing expelled nuclei. Yet, whether macrophages play a role in fetal hematopoiesis beyond serving as a niche for maturing erythroblasts remains elusive. Here, we investigate the heterogeneity of macrophage populations in the murine fetal liver to define their specific roles during hematopoiesis. Using a single-cell omics approach combined with spatial proteomics and genetic fate-mapping models, we found that fetal liver macrophages cluster into distinct yolk sac-derived subpopulations and that long-term HSCs are interacting preferentially with one of the macrophage subpopulations. Fetal livers lacking macrophages show a delay in erythropoiesis and have an increased number of granulocytes, which can be attributed to transcriptional reprogramming and altered differentiation potential of long-term HSCs. Together, our data provide a detailed map of fetal liver macrophage subpopulations and implicate macrophages as part of the fetal HSC niche.