Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes

  1. Young Sun Hwang
  2. Minseok Seo
  3. Sang Kyung Kim
  4. Sohyun Bang
  5. Heebal Kim
  6. Jae Yong Han  Is a corresponding author
  1. Seoul National University, Korea (South), Republic of
  2. Harvard Medical School, United States
  3. C&K Genomics, Korea (South), Republic of

Abstract

The first-wave of transcriptional activation occurs after fertilisation in species-specific patterns. Despite its importance to initial embryonic development, the characteristics of transcription following fertilisation are poorly understood in Aves. Herein, we report detailed insights into the onset of genome activation in chickens. We established that two waves of transcriptional activation occurred after fertilisation and at Eyal-Giladi and Kochav Stage V. We found 1,544 single-nucleotide polymorphisms across 424 transcripts derived from parents in offspring during the early embryonic stages. Surprisingly, only the maternal genome was activated in the zygote, and the paternal genome remained silent until the second-wave, regardless of the presence of a paternal pronucleus or supernumerary sperm in the egg. The identified maternal genes involved in cleavage were replaced by bi-allelic expression. The results demonstrate that only maternal alleles are activated in the chicken zygote upon fertilisation, which could be essential for early embryogenesis and evolutionary outcomes in birds.

Data availability

Generated WGS of parental chickens has been deposited in BioProject under accession number PRJNA393895 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA393895). Generated single hybrid embryonic WTS data has been deposited in GEO under accession number GSE100798 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100798). Published bulked embryonic WTS data are available under accession number GSE86592 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86592).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Young Sun Hwang

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  2. Minseok Seo

    Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5364-7524
  3. Sang Kyung Kim

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  4. Sohyun Bang

    C&K Genomics, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2058-1079
  5. Heebal Kim

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  6. Jae Yong Han

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    For correspondence
    jaehan@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3413-3277

Funding

National Research Foundation of Korea (NRF-2015R1A3A2033826)

  • Jae Yong Han

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Claudio D Stern, University College London, United Kingdom

Ethics

Animal experimentation: The experimental use of chickens was approved by the Institute of Laboratory Animal Resources, Seoul National University (SNU-150827-1). The experimental animals were cared for according to a standard management program at the University Animal Farm, Seoul National University, Korea. The procedures for animal management, reproduction and embryo manipulation adhered to the standard operating protocols of our laboratory.

Version history

  1. Received: June 20, 2018
  2. Accepted: October 29, 2018
  3. Accepted Manuscript published: October 30, 2018 (version 1)
  4. Version of Record published: November 19, 2018 (version 2)
  5. Version of Record updated: November 20, 2018 (version 3)

Copyright

© 2018, Hwang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,596
    views
  • 377
    downloads
  • 13
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Young Sun Hwang
  2. Minseok Seo
  3. Sang Kyung Kim
  4. Sohyun Bang
  5. Heebal Kim
  6. Jae Yong Han
(2018)
Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes
eLife 7:e39381.
https://doi.org/10.7554/eLife.39381

Share this article

https://doi.org/10.7554/eLife.39381

Further reading

    1. Computational and Systems Biology
    2. Developmental Biology
    Arya Y Nakhe, Prasanna K Dadi ... David A Jacobson
    Research Article

    The gain-of-function mutation in the TALK-1 K+ channel (p.L114P) is associated with maturity-onset diabetes of the young (MODY). TALK-1 is a key regulator of β-cell electrical activity and glucose-stimulated insulin secretion. The KCNK16 gene encoding TALK-1 is the most abundant and β-cell-restricted K+ channel transcript. To investigate the impact of KCNK16 L114P on glucose homeostasis and confirm its association with MODY, a mouse model containing the Kcnk16 L114P mutation was generated. Heterozygous and homozygous Kcnk16 L114P mice exhibit increased neonatal lethality in the C57BL/6J and the CD-1 (ICR) genetic background, respectively. Lethality is likely a result of severe hyperglycemia observed in the homozygous Kcnk16 L114P neonates due to lack of glucose-stimulated insulin secretion and can be reduced with insulin treatment. Kcnk16 L114P increased whole-cell β-cell K+ currents resulting in blunted glucose-stimulated Ca2+ entry and loss of glucose-induced Ca2+ oscillations. Thus, adult Kcnk16 L114P mice have reduced glucose-stimulated insulin secretion and plasma insulin levels, which significantly impairs glucose homeostasis. Taken together, this study shows that the MODY-associated Kcnk16 L114P mutation disrupts glucose homeostasis in adult mice resembling a MODY phenotype and causes neonatal lethality by inhibiting islet insulin secretion during development. These data suggest that TALK-1 is an islet-restricted target for the treatment for diabetes.

    1. Developmental Biology
    2. Structural Biology and Molecular Biophysics
    Arne Elofsson, Ling Han ... Luca Jovine
    Research Article

    A crucial event in sexual reproduction is when haploid sperm and egg fuse to form a new diploid organism at fertilization. In mammals, direct interaction between egg JUNO and sperm IZUMO1 mediates gamete membrane adhesion, yet their role in fusion remains enigmatic. We used AlphaFold to predict the structure of other extracellular proteins essential for fertilization to determine if they could form a complex that may mediate fusion. We first identified TMEM81, whose gene is expressed by mouse and human spermatids, as a protein having structural homologies with both IZUMO1 and another sperm molecule essential for gamete fusion, SPACA6. Using a set of proteins known to be important for fertilization and TMEM81, we then systematically searched for predicted binary interactions using an unguided approach and identified a pentameric complex involving sperm IZUMO1, SPACA6, TMEM81 and egg JUNO, CD9. This complex is structurally consistent with both the expected topology on opposing gamete membranes and the location of predicted N-glycans not modeled by AlphaFold-Multimer, suggesting that its components could organize into a synapse-like assembly at the point of fusion. Finally, the structural modeling approach described here could be more generally useful to gain insights into transient protein complexes difficult to detect experimentally.