Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes

  1. Young Sun Hwang
  2. Minseok Seo
  3. Sang Kyung Kim
  4. Sohyun Bang
  5. Heebal Kim
  6. Jae Yong Han  Is a corresponding author
  1. Seoul National University, Korea (South), Republic of
  2. Harvard Medical School, United States
  3. C&K Genomics, Korea (South), Republic of

Abstract

The first-wave of transcriptional activation occurs after fertilisation in species-specific patterns. Despite its importance to initial embryonic development, the characteristics of transcription following fertilisation are poorly understood in Aves. Herein, we report detailed insights into the onset of genome activation in chickens. We established that two waves of transcriptional activation occurred after fertilisation and at Eyal-Giladi and Kochav Stage V. We found 1,544 single-nucleotide polymorphisms across 424 transcripts derived from parents in offspring during the early embryonic stages. Surprisingly, only the maternal genome was activated in the zygote, and the paternal genome remained silent until the second-wave, regardless of the presence of a paternal pronucleus or supernumerary sperm in the egg. The identified maternal genes involved in cleavage were replaced by bi-allelic expression. The results demonstrate that only maternal alleles are activated in the chicken zygote upon fertilisation, which could be essential for early embryogenesis and evolutionary outcomes in birds.

Data availability

Generated WGS of parental chickens has been deposited in BioProject under accession number PRJNA393895 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA393895). Generated single hybrid embryonic WTS data has been deposited in GEO under accession number GSE100798 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE100798). Published bulked embryonic WTS data are available under accession number GSE86592 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE86592).

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Young Sun Hwang

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  2. Minseok Seo

    Brigham and Women's Hospital, Harvard Medical School, Boston, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5364-7524
  3. Sang Kyung Kim

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  4. Sohyun Bang

    C&K Genomics, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2058-1079
  5. Heebal Kim

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    Competing interests
    The authors declare that no competing interests exist.
  6. Jae Yong Han

    Department of Agricultural Biotechnology, Seoul National University, Seoul, Korea (South), Republic of
    For correspondence
    jaehan@snu.ac.kr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3413-3277

Funding

National Research Foundation of Korea (NRF-2015R1A3A2033826)

  • Jae Yong Han

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: The experimental use of chickens was approved by the Institute of Laboratory Animal Resources, Seoul National University (SNU-150827-1). The experimental animals were cared for according to a standard management program at the University Animal Farm, Seoul National University, Korea. The procedures for animal management, reproduction and embryo manipulation adhered to the standard operating protocols of our laboratory.

Copyright

© 2018, Hwang et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,802
    views
  • 401
    downloads
  • 16
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Young Sun Hwang
  2. Minseok Seo
  3. Sang Kyung Kim
  4. Sohyun Bang
  5. Heebal Kim
  6. Jae Yong Han
(2018)
Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes
eLife 7:e39381.
https://doi.org/10.7554/eLife.39381

Share this article

https://doi.org/10.7554/eLife.39381

Further reading

    1. Developmental Biology
    Thomas A Bos, Elizaveta Polyakova ... Monique RM Jongbloed
    Research Article

    Human autonomic neuronal cell models are emerging as tools for modelling diseases such as cardiac arrhythmias. In this systematic review, we compared thirty-three articles applying fourteen different protocols to generate sympathetic neurons and three different procedures to produce parasympathetic neurons. All methods involved the differentiation of human pluripotent stem cells, and none employed permanent or reversible cell immortalization. Almost all protocols were reproduced in multiple pluripotent stem cell lines, and over half show evidence of neural firing capacity. Common limitations in the field are a lack of three-dimensional models and models including multiple cell types. Sympathetic neuron differentiation protocols largely mirrored embryonic development, with the notable absence of migration, axon extension, and target-specificity cues. Parasympathetic neuron differentiation protocols may be improved by including several embryonic cues promoting cell survival, cell maturation, or ion channel expression. Moreover, additional markers to define parasympathetic neurons in vitro may support the validity of these protocols. Nonetheless, four sympathetic neuron differentiation protocols and one parasympathetic neuron differentiation protocol reported more than two thirds of cells expressing autonomic neuron markers. Altogether, these protocols promise to open new research avenues of human autonomic neuron development and disease modelling.

    1. Developmental Biology
    2. Genetics and Genomics
    Svanhild Nornes, Susann Bruche ... Sarah De Val
    Research Article Updated

    The establishment and growth of the arterial endothelium require the coordinated expression of numerous genes. However, regulation of this process is not yet fully understood. Here, we combined in silico analysis with transgenic mice and zebrafish models to characterize arterial-specific enhancers associated with eight key arterial identity genes (Acvrl1/Alk1, Cxcr4, Cxcl12, Efnb2, Gja4/Cx37, Gja5/Cx40, Nrp1, and Unc5b). Next, to elucidate the regulatory pathways upstream of arterial gene transcription, we investigated the transcription factors binding each arterial enhancer compared to a similar assessment of non-arterial endothelial enhancers. These results found that binding of SOXF and ETS factors was a common occurrence at both arterial and pan-endothelial enhancers, suggesting neither are sufficient to direct arterial specificity. Conversely, FOX motifs independent of ETS motifs were over-represented at arterial enhancers. Further, MEF2 and RBPJ binding was enriched but not ubiquitous at arterial enhancers, potentially linked to specific patterns of behaviour within the arterial endothelium. Lastly, there was no shared or arterial-specific signature for WNT-associated TCF/LEF, TGFβ/BMP-associated SMAD1/5 and SMAD2/3, shear stress-associated KLF4, or venous-enriched NR2F2. This cohort of well-characterized and in vivo-verified enhancers can now provide a platform for future studies into the interaction of different transcriptional and signaling pathways with arterial gene expression.