Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD

Abstract

Sensory deprivation during the post-natal 'critical period' leads to structural reorganization of the developing visual cortex. In adulthood, the visual cortex retains some flexibility and adapts to sensory deprivation. Here we show that short-term (2h) monocular deprivation in adult humans boosts the BOLD response to the deprived eye, changing ocular dominance of V1 vertices, consistent with homeostatic plasticity. The boost is strongest in V1, present in V2, V3 and V4 but absent in V3a and hMT+. Assessment of spatial frequency tuning in V1 by a population Receptive-Field technique shows that deprivation primarily boosts high spatial frequencies, consistent with a primary involvement of the parvocellular pathway. Crucially, the V1 deprivation effect correlates across participants with the perceptual increase of the deprived eye dominance assessed with binocular rivalry, suggesting a common origin. Our results demonstrate that visual cortex, particularly the ventral pathway, retains a high potential for homeostatic plasticity in the human adult.

Data availability

BOLD responses and pRF fits as shown in all figures (main and supplementary) have been deposited on Dryad, through a link provided with the current submission (doi:10.5061/dryad.tp24j18). Custom Matlab code, used for pRF fitting, is included as Source code file 1.

The following data sets were generated

Article and author information

Author details

  1. Paola Binda

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan W Kurzawski

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2781-1236
  3. Claudia Lunghi

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Biagi

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Michela Tosetti

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Concetta Morrone

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    For correspondence
    concetta@in.cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1025-0316

Funding

European Research Council (ERC ECSPLAIN 338866)

  • Paola Binda
  • Jan W Kurzawski
  • Maria Concetta Morrone

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN2015)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Research Council (ERA-NET Neuro-DREAM)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Union Horizon 2020 Research and Innovation Programme (NextGenVis 641805)

  • Jan W Kurzawski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Tatiana Pasternak, University of Rochester, United States

Ethics

Human subjects: Experimental procedures are in line with the declaration of Helsinki and were approved by the regional ethics committee [Comitato Etico Pediatrico Regionale-Azienda Ospedaliero-Universitaria Meyer-Firenze (FI)] and by the Italian Ministry of Health, under the protocol 'Plasticità e multimodalità delle prime aree visive: studio in risonanza magnetica a campo ultra alto (7T)'.

Version history

  1. Received: July 11, 2018
  2. Accepted: November 26, 2018
  3. Accepted Manuscript published: November 26, 2018 (version 1)
  4. Version of Record published: December 18, 2018 (version 2)

Copyright

© 2018, Binda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,389
    views
  • 372
    downloads
  • 63
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paola Binda
  2. Jan W Kurzawski
  3. Claudia Lunghi
  4. Laura Biagi
  5. Michela Tosetti
  6. Maria Concetta Morrone
(2018)
Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD
eLife 7:e40014.
https://doi.org/10.7554/eLife.40014

Share this article

https://doi.org/10.7554/eLife.40014

Further reading

    1. Neuroscience
    Ju-Young Lee, Dahee Jung, Sebastien Royer
    Research Article

    Animals can use a repertoire of strategies to navigate in an environment, and it remains an intriguing question how these strategies are selected based on the nature and familiarity of environments. To investigate this question, we developed a fully automated variant of the Barnes maze, characterized by 24 vestibules distributed along the periphery of a circular arena, and monitored the trajectories of mice over 15 days as they learned to navigate towards a goal vestibule from a random start vestibule. We show that the patterns of vestibule visits can be reproduced by the combination of three stochastic processes reminiscent of random, serial, and spatial strategies. The processes randomly selected vestibules based on either uniform (random) or biased (serial and spatial) probability distributions. They closely matched experimental data across a range of statistical distributions characterizing the length, distribution, step size, direction, and stereotypy of vestibule sequences, revealing a shift from random to spatial and serial strategies over time, with a strategy switch occurring approximately every six vestibule visits. Our study provides a novel apparatus and analysis toolset for tracking the repertoire of navigation strategies and demonstrates that a set of stochastic processes can largely account for exploration patterns in the Barnes maze.

    1. Neuroscience
    Harshvardhan Gazula, Henry FJ Tregidgo ... Juan E Iglesias
    Tools and Resources

    We present open-source tools for three-dimensional (3D) analysis of photographs of dissected slices of human brains, which are routinely acquired in brain banks but seldom used for quantitative analysis. Our tools can: (1) 3D reconstruct a volume from the photographs and, optionally, a surface scan; and (2) produce a high-resolution 3D segmentation into 11 brain regions per hemisphere (22 in total), independently of the slice thickness. Our tools can be used as a substitute for ex vivo magnetic resonance imaging (MRI), which requires access to an MRI scanner, ex vivo scanning expertise, and considerable financial resources. We tested our tools on synthetic and real data from two NIH Alzheimer’s Disease Research Centers. The results show that our methodology yields accurate 3D reconstructions, segmentations, and volumetric measurements that are highly correlated to those from MRI. Our method also detects expected differences between post mortem confirmed Alzheimer’s disease cases and controls. The tools are available in our widespread neuroimaging suite ‘FreeSurfer’ (https://surfer.nmr.mgh.harvard.edu/fswiki/PhotoTools).