Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD

Abstract

Sensory deprivation during the post-natal 'critical period' leads to structural reorganization of the developing visual cortex. In adulthood, the visual cortex retains some flexibility and adapts to sensory deprivation. Here we show that short-term (2h) monocular deprivation in adult humans boosts the BOLD response to the deprived eye, changing ocular dominance of V1 vertices, consistent with homeostatic plasticity. The boost is strongest in V1, present in V2, V3 and V4 but absent in V3a and hMT+. Assessment of spatial frequency tuning in V1 by a population Receptive-Field technique shows that deprivation primarily boosts high spatial frequencies, consistent with a primary involvement of the parvocellular pathway. Crucially, the V1 deprivation effect correlates across participants with the perceptual increase of the deprived eye dominance assessed with binocular rivalry, suggesting a common origin. Our results demonstrate that visual cortex, particularly the ventral pathway, retains a high potential for homeostatic plasticity in the human adult.

Data availability

BOLD responses and pRF fits as shown in all figures (main and supplementary) have been deposited on Dryad, through a link provided with the current submission (doi:10.5061/dryad.tp24j18). Custom Matlab code, used for pRF fitting, is included as Source code file 1.

The following data sets were generated

Article and author information

Author details

  1. Paola Binda

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan W Kurzawski

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2781-1236
  3. Claudia Lunghi

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Biagi

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Michela Tosetti

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Concetta Morrone

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    For correspondence
    concetta@in.cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1025-0316

Funding

European Research Council (ERC ECSPLAIN 338866)

  • Paola Binda
  • Jan W Kurzawski
  • Maria Concetta Morrone

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN2015)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Research Council (ERA-NET Neuro-DREAM)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Union Horizon 2020 Research and Innovation Programme (NextGenVis 641805)

  • Jan W Kurzawski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Experimental procedures are in line with the declaration of Helsinki and were approved by the regional ethics committee [Comitato Etico Pediatrico Regionale-Azienda Ospedaliero-Universitaria Meyer-Firenze (FI)] and by the Italian Ministry of Health, under the protocol 'Plasticità e multimodalità delle prime aree visive: studio in risonanza magnetica a campo ultra alto (7T)'.

Copyright

© 2018, Binda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,514
    views
  • 380
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paola Binda
  2. Jan W Kurzawski
  3. Claudia Lunghi
  4. Laura Biagi
  5. Michela Tosetti
  6. Maria Concetta Morrone
(2018)
Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD
eLife 7:e40014.
https://doi.org/10.7554/eLife.40014

Share this article

https://doi.org/10.7554/eLife.40014

Further reading

    1. Neuroscience
    Sara Jamali, Sophie Bagur ... Brice Bathellier
    Research Article

    The brain predicts regularities in sensory inputs at multiple complexity levels, with neuronal mechanisms that remain elusive. Here, we monitored auditory cortex activity during the local-global paradigm, a protocol nesting different regularity levels in sound sequences. We observed that mice encode local predictions based on stimulus occurrence and stimulus transition probabilities, because auditory responses are boosted upon prediction violation. This boosting was due to both short-term adaptation and an adaptation-independent surprise mechanism resisting anesthesia. In parallel, and only in wakefulness, VIP interneurons responded to the omission of the locally expected sound repeat at the sequence ending, thus providing a chunking signal potentially useful for establishing global sequence structure. When this global structure was violated, by either shortening the sequence or ending it with a locally expected but globally unexpected sound transition, activity slightly increased in VIP and PV neurons, respectively. Hence, distinct cellular mechanisms predict different regularity levels in sound sequences.

    1. Neuroscience
    Emmanuel Ponsot
    Insight

    Damage to the synapses connecting hair cells to the auditory nerve leads to undetected hearing impairments.