Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD

Abstract

Sensory deprivation during the post-natal 'critical period' leads to structural reorganization of the developing visual cortex. In adulthood, the visual cortex retains some flexibility and adapts to sensory deprivation. Here we show that short-term (2h) monocular deprivation in adult humans boosts the BOLD response to the deprived eye, changing ocular dominance of V1 vertices, consistent with homeostatic plasticity. The boost is strongest in V1, present in V2, V3 and V4 but absent in V3a and hMT+. Assessment of spatial frequency tuning in V1 by a population Receptive-Field technique shows that deprivation primarily boosts high spatial frequencies, consistent with a primary involvement of the parvocellular pathway. Crucially, the V1 deprivation effect correlates across participants with the perceptual increase of the deprived eye dominance assessed with binocular rivalry, suggesting a common origin. Our results demonstrate that visual cortex, particularly the ventral pathway, retains a high potential for homeostatic plasticity in the human adult.

Data availability

BOLD responses and pRF fits as shown in all figures (main and supplementary) have been deposited on Dryad, through a link provided with the current submission (doi:10.5061/dryad.tp24j18). Custom Matlab code, used for pRF fitting, is included as Source code file 1.

The following data sets were generated

Article and author information

Author details

  1. Paola Binda

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan W Kurzawski

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2781-1236
  3. Claudia Lunghi

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Biagi

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Michela Tosetti

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Concetta Morrone

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    For correspondence
    concetta@in.cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1025-0316

Funding

European Research Council (ERC ECSPLAIN 338866)

  • Paola Binda
  • Jan W Kurzawski
  • Maria Concetta Morrone

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN2015)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Research Council (ERA-NET Neuro-DREAM)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Union Horizon 2020 Research and Innovation Programme (NextGenVis 641805)

  • Jan W Kurzawski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Experimental procedures are in line with the declaration of Helsinki and were approved by the regional ethics committee [Comitato Etico Pediatrico Regionale-Azienda Ospedaliero-Universitaria Meyer-Firenze (FI)] and by the Italian Ministry of Health, under the protocol 'Plasticità e multimodalità delle prime aree visive: studio in risonanza magnetica a campo ultra alto (7T)'.

Copyright

© 2018, Binda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,532
    views
  • 382
    downloads
  • 66
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paola Binda
  2. Jan W Kurzawski
  3. Claudia Lunghi
  4. Laura Biagi
  5. Michela Tosetti
  6. Maria Concetta Morrone
(2018)
Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD
eLife 7:e40014.
https://doi.org/10.7554/eLife.40014

Share this article

https://doi.org/10.7554/eLife.40014

Further reading

    1. Neuroscience
    Livio Oboti, Federico Pedraja ... Rüdiger Krahe
    Research Article

    Since the pioneering work by Moeller, Szabo, and Bullock, weakly electric fish have served as a valuable model for investigating spatial and social cognitive abilities in a vertebrate taxon usually less accessible than mammals or other terrestrial vertebrates. These fish, through their electric organ, generate low-intensity electric fields to navigate and interact with conspecifics, even in complete darkness. The brown ghost knifefish is appealing as a study subject due to a rich electric ‘vocabulary’, made by individually variable and sex-specific electric signals. These are mainly characterized by brief frequency modulations of the oscillating dipole moment continuously generated by their electric organ, and are known as chirps. Different types of chirps are believed to convey specific and behaviorally salient information, serving as behavioral readouts for different internal states during behavioral observations. Despite the success of this model in neuroethology over the past seven decades, the code to decipher their electric communication remains unknown. To this aim, in this study we re-evaluate the correlations between signals and behavior offering an alternative, and possibly complementary, explanation for why these freshwater bottom dwellers emit electric chirps. By uncovering correlations among chirping, electric field geometry, and detectability in enriched environments, we present evidence for a previously unexplored role of chirps as specialized self-directed signals, enhancing conspecific electrolocation during social encounters.

    1. Neuroscience
    Lisa Reisinger, Gianpaolo Demarchi ... Nathan Weisz
    Research Article

    Phantom perceptions like tinnitus occur without any identifiable environmental or bodily source. The mechanisms and key drivers behind tinnitus are poorly understood. The dominant framework, suggesting that tinnitus results from neural hyperactivity in the auditory pathway following hearing damage, has been difficult to investigate in humans and has reached explanatory limits. As a result, researchers have tried to explain perceptual and potential neural aberrations in tinnitus within a more parsimonious predictive-coding framework. In two independent magnetoencephalography studies, participants passively listened to sequences of pure tones with varying levels of regularity (i.e. predictability) ranging from random to ordered. Aside from being a replication of the first study, the pre-registered second study, including 80 participants, ensured rigorous matching of hearing status, as well as age, sex, and hearing loss, between individuals with and without tinnitus. Despite some changes in the details of the paradigm, both studies equivalently reveal a group difference in neural representation, based on multivariate pattern analysis, of upcoming stimuli before their onset. These data strongly suggest that individuals with tinnitus engage anticipatory auditory predictions differently to controls. While the observation of different predictive processes is robust and replicable, the precise neurocognitive mechanism underlying it calls for further, ideally longitudinal, studies to establish its role as a potential contributor to, and/or consequence of, tinnitus.