Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD

  1. Paola Binda
  2. Jan W Kurzawski
  3. Claudia Lunghi
  4. Laura Biagi
  5. Michela Tosetti
  6. Maria Concetta Morrone  Is a corresponding author
  1. University of Pisa, Italy
  2. IRCCS Stella Maris, Italy

Abstract

Sensory deprivation during the post-natal 'critical period' leads to structural reorganization of the developing visual cortex. In adulthood, the visual cortex retains some flexibility and adapts to sensory deprivation. Here we show that short-term (2h) monocular deprivation in adult humans boosts the BOLD response to the deprived eye, changing ocular dominance of V1 vertices, consistent with homeostatic plasticity. The boost is strongest in V1, present in V2, V3 and V4 but absent in V3a and hMT+. Assessment of spatial frequency tuning in V1 by a population Receptive-Field technique shows that deprivation primarily boosts high spatial frequencies, consistent with a primary involvement of the parvocellular pathway. Crucially, the V1 deprivation effect correlates across participants with the perceptual increase of the deprived eye dominance assessed with binocular rivalry, suggesting a common origin. Our results demonstrate that visual cortex, particularly the ventral pathway, retains a high potential for homeostatic plasticity in the human adult.

Data availability

BOLD responses and pRF fits as shown in all figures (main and supplementary) have been deposited on Dryad, through a link provided with the current submission (doi:10.5061/dryad.tp24j18). Custom Matlab code, used for pRF fitting, is included as Source code file 1.

The following data sets were generated

Article and author information

Author details

  1. Paola Binda

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  2. Jan W Kurzawski

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2781-1236
  3. Claudia Lunghi

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  4. Laura Biagi

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  5. Michela Tosetti

    IRCCS Stella Maris, Pisa, Italy
    Competing interests
    The authors declare that no competing interests exist.
  6. Maria Concetta Morrone

    Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
    For correspondence
    concetta@in.cnr.it
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1025-0316

Funding

European Research Council (ERC ECSPLAIN 338866)

  • Paola Binda
  • Jan W Kurzawski
  • Maria Concetta Morrone

Ministero dell'Istruzione, dell'Università e della Ricerca (PRIN2015)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Research Council (ERA-NET Neuro-DREAM)

  • Claudia Lunghi
  • Maria Concetta Morrone

European Union Horizon 2020 Research and Innovation Programme (NextGenVis 641805)

  • Jan W Kurzawski

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: Experimental procedures are in line with the declaration of Helsinki and were approved by the regional ethics committee [Comitato Etico Pediatrico Regionale-Azienda Ospedaliero-Universitaria Meyer-Firenze (FI)] and by the Italian Ministry of Health, under the protocol 'Plasticità e multimodalità delle prime aree visive: studio in risonanza magnetica a campo ultra alto (7T)'.

Reviewing Editor

  1. Tatiana Pasternak, University of Rochester, United States

Publication history

  1. Received: July 11, 2018
  2. Accepted: November 26, 2018
  3. Accepted Manuscript published: November 26, 2018 (version 1)
  4. Version of Record published: December 18, 2018 (version 2)

Copyright

© 2018, Binda et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,037
    Page views
  • 327
    Downloads
  • 40
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Paola Binda
  2. Jan W Kurzawski
  3. Claudia Lunghi
  4. Laura Biagi
  5. Michela Tosetti
  6. Maria Concetta Morrone
(2018)
Response to short-term deprivation of the human adult visual cortex measured with 7T BOLD
eLife 7:e40014.
https://doi.org/10.7554/eLife.40014

Further reading

    1. Developmental Biology
    2. Neuroscience
    Daniel T Pederick, Nicole A Perry-Hauser ... Liqun Luo
    Research Article

    The formation of neural circuits requires extensive interactions of cell-surface proteins to guide axons to their correct target neurons. Trans-cellular interactions of the adhesion G protein-coupled receptor latrophilin-2 (Lphn2) with its partner teneurin-3 instruct the precise assembly of hippocampal networks by reciprocal repulsion. Lphn2 acts as a repulsive receptor in distal CA1 neurons to direct their axons to proximal subiculum, and as a repulsive ligand in proximal subiculum to direct proximal CA1 axons to distal subiculum. It remains unclear if Lphn2-mediated intracellular signaling is required for its role in either context. Here, we show that Lphn2 couples to Gα12/13 in heterologous cells; this coupling is increased by constitutive exposure of the tethered agonist. Specific mutations of Lphn2's tethered agonist region disrupt its G protein coupling and autoproteolytic cleavage, whereas mutating the autoproteolytic cleavage site alone prevents cleavage but preserves a functional tethered agonist. Using an in vivo misexpression assay, we demonstrate that wild-type Lphn2 misdirects proximal CA1 axons to proximal subiculum and that Lphn2 tethered agonist activity is required for its role as a repulsive receptor in axons. By contrast, neither tethered agonist activity nor autoproteolysis was necessary for Lphn2's role as a repulsive ligand in the subiculum target neurons. Thus, tethered agonist activity is required for Lphn2-mediated neural circuit assembly in a context-dependent manner.

    1. Neuroscience
    Brian D Mueller, Sean A Merrill ... Erik M Jorgensen
    Research Article Updated

    Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.