1. Chromosomes and Gene Expression
  2. Structural Biology and Molecular Biophysics
Download icon

A conserved filamentous assembly underlies the structure of the meiotic chromosome axis

  1. Alan M V West
  2. Scott C Rosenberg
  3. Sarah N Ur
  4. Madison K Lehmer
  5. Qiaozhen Ye
  6. Götz Hagemann
  7. Iracema Caballero
  8. Isabel Uson
  9. Amy J MacQueen
  10. Franz Herzog
  11. Kevin D Corbett  Is a corresponding author
  1. University of California, San Diego, United States
  2. Ludwig-Maximilians-Universität München, Germany
  3. Institute of Molecular Biology of Barcelona, Spain
  4. Wesleyan University, United States
Research Article
  • Cited 42
  • Views 2,484
  • Annotations
Cite this article as: eLife 2019;8:e40372 doi: 10.7554/eLife.40372

Abstract

The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.

Data availability

Primary diffraction data for M. musculus SYCP3 tetramer structures have been deposited with the SBGrid Data Bank (https://data.sbgrid.org) under dataset numbers 583 (P21 crystal form) and 584 (P1 form).Reduced diffraction data and refined structural models have been deposited with the Protein Data Bank (www.pdb.org) under accession numbers 6DD8 (P21 crystal form) and 6DD9 (P1 form)

The following data sets were generated

Article and author information

Author details

  1. Alan M V West

    Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott C Rosenberg

    Department of Chemistry, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah N Ur

    Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Madison K Lehmer

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiaozhen Ye

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Götz Hagemann

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Iracema Caballero

    Crystallographic Methods, Institute of Molecular Biology of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Isabel Uson

    Crystallographic Methods, Institute of Molecular Biology of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Amy J MacQueen

    Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Franz Herzog

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8270-1449
  11. Kevin D Corbett

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    kcorbett@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5854-2388

Funding

National Institutes of Health (R01 GM104141)

  • Alan M V West
  • Scott C Rosenberg
  • Madison K Lehmer
  • Qiaozhen Ye
  • Kevin D Corbett

Human Frontier Science Program (RGP0008/2015)

  • Franz Herzog
  • Kevin D Corbett

National Science Foundation (Graduate Research Fellowship)

  • Sarah N Ur

Ludwig Institute for Cancer Research

  • Kevin D Corbett

National Institutes of Health (R15 GM116109)

  • Amy J MacQueen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bernard de Massy, Institute of Human Genetics, CNRS UPR 1142, France

Publication history

  1. Received: July 24, 2018
  2. Accepted: January 18, 2019
  3. Accepted Manuscript published: January 18, 2019 (version 1)
  4. Version of Record published: January 28, 2019 (version 2)

Copyright

© 2019, West et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,484
    Page views
  • 452
    Downloads
  • 42
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Molly Brothers, Jasper Rine
    Research Article

    The formation of heterochromatin at HML, HMR, and telomeres in Saccharomyces cerevisiae involves two main steps: Recruitment of Sir proteins to silencers and their spread throughout the silenced domain. We developed a method to study these two processes at single base-pair resolution. Using a fusion protein between the heterochromatin protein Sir3 and the non-site-specific bacterial adenine methyltransferase M.EcoGII, we mapped sites of Sir3-chromatin interactions genome-wide using long-read Nanopore sequencing to detect adenines methylated by the fusion protein and by ChIP-seq to map the distribution of Sir3-M.EcoGII. A silencing-deficient mutant of Sir3 lacking its Bromo-Adjacent Homology (BAH) domain, sir3-bah∆, was still recruited to HML, HMR, and telomeres. However, in the absence of the BAH domain, it was unable to spread away from those recruitment sites. Overexpression of Sir3 did not lead to further spreading at HML, HMR, and most telomeres. A few exceptional telomeres, like 6R, exhibited a small amount of Sir3 spreading, suggesting that boundaries at telomeres responded variably to Sir3 overexpression. Finally, by using a temperature-sensitive allele of SIR3 fused to M.ECOGII, we tracked the positions first methylated after induction and found that repression of genes at HML and HMR began before Sir3 occupied the entire locus.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Juliane Glaser et al.
    Research Article

    Genomic imprinting refers to the mono-allelic and parent-specific expression of a subset of genes. While long recognized for their role in embryonic development, imprinted genes have recently emerged as important modulators of postnatal physiology, notably through hypothalamus-driven functions. Here, using mouse models of loss, gain and parental inversion of expression, we report that the paternally expressed Zdbf2 gene controls neonatal growth in mice, in a dose-sensitive but parent-of-origin-independent manner. We further found that Zdbf2-KO neonates failed to fully activate hypothalamic circuits that stimulate appetite, and suffered milk deprivation and diminished circulating Insulin Growth Factor 1 (IGF-1). Consequently, only half of Zdbf2-KO pups survived the first days after birth and those surviving were smaller. This study demonstrates that precise imprinted gene dosage is essential for vital physiological functions at the transition from intra- to extra-uterine life, here the adaptation to oral feeding and optimized body weight gain.