A conserved filamentous assembly underlies the structure of the meiotic chromosome axis

  1. Alan M V West
  2. Scott C Rosenberg
  3. Sarah N Ur
  4. Madison K Lehmer
  5. Qiaozhen Ye
  6. Götz Hagemann
  7. Iracema Caballero
  8. Isabel Uson
  9. Amy J MacQueen
  10. Franz Herzog
  11. Kevin D Corbett  Is a corresponding author
  1. University of California, San Diego, United States
  2. Ludwig-Maximilians-Universität München, Germany
  3. Institute of Molecular Biology of Barcelona, Spain
  4. Wesleyan University, United States

Abstract

The meiotic chromosome axis plays key roles in meiotic chromosome organization and recombination, yet the underlying protein components of this structure are highly diverged. Here, we show that 'axis core proteins' from budding yeast (Red1), mammals (SYCP2/SYCP3), and plants (ASY3/ASY4) are evolutionarily related and play equivalent roles in chromosome axis assembly. We first identify 'closure motifs' in each complex that recruit meiotic HORMADs, the master regulators of meiotic recombination. We next find that axis core proteins form homotetrameric (Red1) or heterotetrameric (SYCP2:SYCP3 and ASY3:ASY4) coiled-coil assemblies that further oligomerize into micron-length filaments. Thus, the meiotic chromosome axis core in fungi, mammals, and plants shares a common molecular architecture, and likely also plays conserved roles in meiotic chromosome axis assembly and recombination control.

Data availability

Primary diffraction data for M. musculus SYCP3 tetramer structures have been deposited with the SBGrid Data Bank (https://data.sbgrid.org) under dataset numbers 583 (P21 crystal form) and 584 (P1 form).Reduced diffraction data and refined structural models have been deposited with the Protein Data Bank (www.pdb.org) under accession numbers 6DD8 (P21 crystal form) and 6DD9 (P1 form)

The following data sets were generated

Article and author information

Author details

  1. Alan M V West

    Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Scott C Rosenberg

    Department of Chemistry, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarah N Ur

    Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Madison K Lehmer

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Qiaozhen Ye

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Götz Hagemann

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Iracema Caballero

    Crystallographic Methods, Institute of Molecular Biology of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  8. Isabel Uson

    Crystallographic Methods, Institute of Molecular Biology of Barcelona, Barcelona, Spain
    Competing interests
    The authors declare that no competing interests exist.
  9. Amy J MacQueen

    Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Franz Herzog

    Gene Center Munich, Ludwig-Maximilians-Universität München, Munich, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8270-1449
  11. Kevin D Corbett

    Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, United States
    For correspondence
    kcorbett@ucsd.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5854-2388

Funding

National Institutes of Health (R01 GM104141)

  • Alan M V West
  • Scott C Rosenberg
  • Madison K Lehmer
  • Qiaozhen Ye
  • Kevin D Corbett

Human Frontier Science Program (RGP0008/2015)

  • Franz Herzog
  • Kevin D Corbett

National Science Foundation (Graduate Research Fellowship)

  • Sarah N Ur

Ludwig Institute for Cancer Research

  • Kevin D Corbett

National Institutes of Health (R15 GM116109)

  • Amy J MacQueen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, West et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,674
    views
  • 567
    downloads
  • 97
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alan M V West
  2. Scott C Rosenberg
  3. Sarah N Ur
  4. Madison K Lehmer
  5. Qiaozhen Ye
  6. Götz Hagemann
  7. Iracema Caballero
  8. Isabel Uson
  9. Amy J MacQueen
  10. Franz Herzog
  11. Kevin D Corbett
(2019)
A conserved filamentous assembly underlies the structure of the meiotic chromosome axis
eLife 8:e40372.
https://doi.org/10.7554/eLife.40372

Share this article

https://doi.org/10.7554/eLife.40372

Further reading

    1. Chromosomes and Gene Expression
    2. Evolutionary Biology
    Timothy Fuqua, Yiqiao Sun, Andreas Wagner
    Research Article

    Gene regulation is essential for life and controlled by regulatory DNA. Mutations can modify the activity of regulatory DNA, and also create new regulatory DNA, a process called regulatory emergence. Non-regulatory and regulatory DNA contain motifs to which transcription factors may bind. In prokaryotes, gene expression requires a stretch of DNA called a promoter, which contains two motifs called –10 and –35 boxes. However, these motifs may occur in both promoters and non-promoter DNA in multiple copies. They have been implicated in some studies to improve promoter activity, and in others to repress it. Here, we ask whether the presence of such motifs in different genetic sequences influences promoter evolution and emergence. To understand whether and how promoter motifs influence promoter emergence and evolution, we start from 50 ‘promoter islands’, DNA sequences enriched with –10 and –35 boxes. We mutagenize these starting ‘parent’ sequences, and measure gene expression driven by 240,000 of the resulting mutants. We find that the probability that mutations create an active promoter varies more than 200-fold, and is not correlated with the number of promoter motifs. For parent sequences without promoter activity, mutations created over 1500 new –10 and –35 boxes at unique positions in the library, but only ~0.3% of these resulted in de-novo promoter activity. Only ~13% of all –10 and –35 boxes contribute to de-novo promoter activity. For parent sequences with promoter activity, mutations created new –10 and –35 boxes in 11 specific positions that partially overlap with preexisting ones to modulate expression. We also find that –10 and –35 boxes do not repress promoter activity. Overall, our work demonstrates how promoter motifs influence promoter emergence and evolution. It has implications for predicting and understanding regulatory evolution, de novo genes, and phenotypic evolution.

    1. Chromosomes and Gene Expression
    2. Developmental Biology
    Valentin Babosha, Natalia Klimenko ... Oksana Maksimenko
    Research Article

    The male-specific lethal complex (MSL), which consists of five proteins and two non-coding roX RNAs, is involved in the transcriptional enhancement of X-linked genes to compensate for the sex chromosome monosomy in Drosophila XY males compared with XX females. The MSL1 and MSL2 proteins form the heterotetrameric core of the MSL complex and are critical for the specific recruitment of the complex to the high-affinity ‘entry’ sites (HAS) on the X chromosome. In this study, we demonstrated that the N-terminal region of MSL1 is critical for stability and functions of MSL1. Amino acid deletions and substitutions in the N-terminal region of MSL1 strongly affect both the interaction with roX2 RNA and the MSL complex binding to HAS on the X chromosome. In particular, substitution of the conserved N-terminal amino-acids 3–7 in MSL1 (MSL1GS) affects male viability similar to the inactivation of genes encoding roX RNAs. In addition, MSL1GS binds to promoters such as MSL1WT but does not co-bind with MSL2 and MSL3 to X chromosomal HAS. However, overexpression of MSL2 partially restores the dosage compensation. Thus, the interaction of MSL1 with roX RNA is critical for the efficient assembly of the MSL complex on HAS of the male X chromosome.