Genome-wide Estrogen Receptor-α activation is sustained, not cyclical

  1. Andrew N Holding  Is a corresponding author
  2. Amy E Cullen
  3. Florian Markowetz
  1. University of Cambridge, United Kingdom

Abstract

Estrogen Receptor-alpha (ER) drives 75% of breast cancers. Stimulation of the ER by estra-2-diol forms a transcriptionally-active chromatin-bound complex. Previous studies reported that ER binding follows a cyclical pattern. However, most studies have been limited to individual ER target genes and without replicates. Thus, the robustness and generality of ER cycling are not well understood. We present a comprehensive genome-wide analysis of the ER after activation, based on 6 replicates at 10 time-points, using our method for precise quantification of binding, Parallel-Factor ChIP-seq. In contrast to previous studies, we identified a sustained increase in affinity, alongside a class of estra-2-diol independent binding sites. Our results are corroborated by quantitative re-analysis of multiple independent studies. Our new model reconciles the conflicting studies into the ER at the TFF1 promoter and provides a detailed understanding in the context of the ER's role as both the driver and therapeutic target of breast cancer.

Data availability

Sequencing data have been deposited in GEO under accession code GSE119057.

The following data sets were generated

Article and author information

Author details

  1. Andrew N Holding

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    andrew.holding@cruk.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8459-7048
  2. Amy E Cullen

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian Markowetz

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Cancer Research UK (C14303/A17197)

  • Florian Markowetz

Breast Cancer Now (2012NovPR042)

  • Florian Markowetz

Cancer Research UK (C60571/A24631)

  • Andrew N Holding

Cancer Research UK (A19274)

  • Florian Markowetz

Alan Turing Institute (EPSRC grant EP/N510129/129/1)

  • Andrew N Holding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Maarten van Lohuizen, The Netherlands Cancer Institute, Netherlands

Version history

  1. Received: August 22, 2018
  2. Accepted: November 16, 2018
  3. Accepted Manuscript published: November 20, 2018 (version 1)
  4. Version of Record published: December 10, 2018 (version 2)

Copyright

© 2018, Holding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,119
    Page views
  • 367
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew N Holding
  2. Amy E Cullen
  3. Florian Markowetz
(2018)
Genome-wide Estrogen Receptor-α activation is sustained, not cyclical
eLife 7:e40854.
https://doi.org/10.7554/eLife.40854

Share this article

https://doi.org/10.7554/eLife.40854

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Lucie Crhak Khaitova, Pavlina Mikulkova ... Karel Riha
    Research Article

    Heat stress is a major threat to global crop production, and understanding its impact on plant fertility is crucial for developing climate-resilient crops. Despite the known negative effects of heat stress on plant reproduction, the underlying molecular mechanisms remain poorly understood. Here, we investigated the impact of elevated temperature on centromere structure and chromosome segregation during meiosis in Arabidopsis thaliana. Consistent with previous studies, heat stress leads to a decline in fertility and micronuclei formation in pollen mother cells. Our results reveal that elevated temperature causes a decrease in the amount of centromeric histone and the kinetochore protein BMF1 at meiotic centromeres with increasing temperature. Furthermore, we show that heat stress increases the duration of meiotic divisions and prolongs the activity of the spindle assembly checkpoint during meiosis I, indicating an impaired efficiency of the kinetochore attachments to spindle microtubules. Our analysis of mutants with reduced levels of centromeric histone suggests that weakened centromeres sensitize plants to elevated temperature, resulting in meiotic defects and reduced fertility even at moderate temperatures. These results indicate that the structure and functionality of meiotic centromeres in Arabidopsis are highly sensitive to heat stress, and suggest that centromeres and kinetochores may represent a critical bottleneck in plant adaptation to increasing temperatures.

    1. Chromosomes and Gene Expression
    Allison Coté, Aoife O'Farrell ... Arjun Raj
    Research Article

    Splicing is the stepwise molecular process by which introns are removed from pre-mRNA and exons are joined together to form mature mRNA sequences. The ordering and spatial distribution of these steps remain controversial, with opposing models suggesting splicing occurs either during or after transcription. We used single-molecule RNA FISH, expansion microscopy, and live-cell imaging to reveal the spatiotemporal distribution of nascent transcripts in mammalian cells. At super-resolution levels, we found that pre-mRNA formed clouds around the transcription site. These clouds indicate the existence of a transcription-site-proximal zone through which RNA move more slowly than in the nucleoplasm. Full-length pre-mRNA undergo continuous splicing as they move through this zone following transcription, suggesting a model in which splicing can occur post-transcriptionally but still within the proximity of the transcription site, thus seeming co-transcriptional by most assays. These results may unify conflicting reports of co-transcriptional versus post-transcriptional splicing.