Genome-wide Estrogen Receptor-α activation is sustained, not cyclical

  1. Andrew N Holding  Is a corresponding author
  2. Amy E Cullen
  3. Florian Markowetz
  1. University of Cambridge, United Kingdom

Abstract

Estrogen Receptor-alpha (ER) drives 75% of breast cancers. Stimulation of the ER by estra-2-diol forms a transcriptionally-active chromatin-bound complex. Previous studies reported that ER binding follows a cyclical pattern. However, most studies have been limited to individual ER target genes and without replicates. Thus, the robustness and generality of ER cycling are not well understood. We present a comprehensive genome-wide analysis of the ER after activation, based on 6 replicates at 10 time-points, using our method for precise quantification of binding, Parallel-Factor ChIP-seq. In contrast to previous studies, we identified a sustained increase in affinity, alongside a class of estra-2-diol independent binding sites. Our results are corroborated by quantitative re-analysis of multiple independent studies. Our new model reconciles the conflicting studies into the ER at the TFF1 promoter and provides a detailed understanding in the context of the ER's role as both the driver and therapeutic target of breast cancer.

Data availability

Sequencing data have been deposited in GEO under accession code GSE119057.

The following data sets were generated

Article and author information

Author details

  1. Andrew N Holding

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    andrew.holding@cruk.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8459-7048
  2. Amy E Cullen

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Florian Markowetz

    Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.

Funding

Cancer Research UK (C14303/A17197)

  • Florian Markowetz

Breast Cancer Now (2012NovPR042)

  • Florian Markowetz

Cancer Research UK (C60571/A24631)

  • Andrew N Holding

Cancer Research UK (A19274)

  • Florian Markowetz

Alan Turing Institute (EPSRC grant EP/N510129/129/1)

  • Andrew N Holding

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2018, Holding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,215
    views
  • 374
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Andrew N Holding
  2. Amy E Cullen
  3. Florian Markowetz
(2018)
Genome-wide Estrogen Receptor-α activation is sustained, not cyclical
eLife 7:e40854.
https://doi.org/10.7554/eLife.40854

Share this article

https://doi.org/10.7554/eLife.40854

Further reading

    1. Chromosomes and Gene Expression
    Shamayita Roy, Hemanta Adhikary ... Damien D'Amours
    Research Article Updated

    The R-loop is a common transcriptional by-product that consists of an RNA-DNA duplex joined to a displaced strand of genomic DNA. While the effects of R-loops on health and disease are well established, there is still an incomplete understanding of the cellular processes responsible for their removal from eukaryotic genomes. Here, we show that a core regulator of chromosome architecture —the Smc5/6 complex— plays a crucial role in the removal of R-loop structures formed during gene transcription. Consistent with this, budding yeast mutants defective in the Smc5/6 complex and enzymes involved in R-loop resolution show strong synthetic interactions and accumulate high levels of RNA-DNA hybrid structures in their chromosomes. Importantly, we demonstrate that the Smc5/6 complex acts on specific types of RNA-DNA hybrid structures in vivo and promotes R-loop degradation by the RNase H2 enzyme in vitro. Collectively, our results reveal a crucial role for the Smc5/6 complex in the removal of toxic R-loops formed at highly transcribed genes and telomeres.

    1. Chromosomes and Gene Expression
    2. Microbiology and Infectious Disease
    Zeinab M Chahine, Mohit Gupta ... Karine G Le Roch
    Research Article

    The environmental challenges the human malaria parasite, Plasmodium falciparum, faces during its progression into its various lifecycle stages warrant the use of effective and highly regulated access to chromatin for transcriptional regulation. Microrchidia (MORC) proteins have been implicated in DNA compaction and gene silencing across plant and animal kingdoms. Accumulating evidence has shed light on the role MORC protein plays as a transcriptional switch in apicomplexan parasites. In this study, using the CRISPR/Cas9 genome editing tool along with complementary molecular and genomics approaches, we demonstrate that PfMORC not only modulates chromatin structure and heterochromatin formation throughout the parasite erythrocytic cycle, but is also essential to the parasite survival. Chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) experiments suggests that PfMORC binds to not only sub-telomeric regions and genes involved in antigenic variation but may also play a role in modulating stage transition. Protein knockdown experiments followed by chromatin conformation capture (Hi-C) studies indicate that downregulation of PfMORC impairs key histone marks and induces the collapse of the parasite heterochromatin structure leading to its death. All together these findings confirm that PfMORC plays a crucial role in chromatin structure and gene regulation, validating this factor as a strong candidate for novel antimalarial strategies.