Abstract

A comprehensive description of the phenotypic changes during cellular aging is key towards unraveling its causal forces. Previously, we mapped age-related changes in the proteome and transcriptome changes (Janssens et al., 2015). Here, we use these results and model-based inference to generate a comprehensive account of metabolic changes during the replicative life of Saccharomyces cerevisiae. With age, we found decreasing metabolite levels, decreasing growth and substrate uptake rates accompanied by a switch from aerobic fermentation to respiration, with glycerol and acetate production. The identified metabolic fluxes revealed an increase in redox cofactor turnover, likely to combat increased production of reactive oxygen species. The metabolic changes are possibly a result of the age-associated decrease in surface area per cell volume. With metabolism being an important factor of the cellular phenotype, this work complements our recent mapping of the transcriptomic and proteomic changes towards a holistic description of the cellular processes during aging.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Simeon Leupold

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7186-7061
  2. Georg Hubmann

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  3. Athanasios Litsios

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3588-4988
  4. Anne C Meinema

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0002-3486
  5. Vakil Takhaveev

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  6. Alexandros Papagiannakis

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Bastian Niebel

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  8. Georges Janssens

    European Research Institute for the Biology of Ageing, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  9. David Siegel

    Analytical Biochemistry, University of Groningen, Groningen, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  10. Matthias Heinemann

    Molecular Systems Biology, University of Groningen, Groningen, Netherlands
    For correspondence
    m.heinemann@rug.nl
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5512-9077

Funding

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

  • Matthias Heinemann

European Commission (642738)

  • Vakil Takhaveev
  • Matthias Heinemann

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Leupold et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 7,362
    views
  • 850
    downloads
  • 40
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simeon Leupold
  2. Georg Hubmann
  3. Athanasios Litsios
  4. Anne C Meinema
  5. Vakil Takhaveev
  6. Alexandros Papagiannakis
  7. Bastian Niebel
  8. Georges Janssens
  9. David Siegel
  10. Matthias Heinemann
(2019)
Saccharomyces cerevisiae goes through distinct metabolic phases during its replicative lifespan
eLife 8:e41046.
https://doi.org/10.7554/eLife.41046

Share this article

https://doi.org/10.7554/eLife.41046

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Deb Sankar Banerjee, Shiladitya Banerjee
    Research Article

    Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.