ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinery
Abstract
Transport of proteins across membranes is a fundamental process, achieved in every cell by the 'Sec' translocon. In prokaryotes, SecYEG associates with the motor ATPase SecA to carry out translocation for pre-protein secretion. Previously, we proposed a Brownian ratchet model for transport, whereby the free energy of ATP-turnover favours the directional diffusion of the polypeptide [Allen et al. eLife 2016]. Here, we show that ATP enhances this process by modulating secondary structure formation within the translocating protein. A combination of molecular simulation with hydrogen-deuterium-exchange mass spectrometry and electron paramagnetic resonance spectroscopy reveal an asymmetry across the membrane: ATP induced conformational changes in the cytosolic cavity promote unfolded pre-protein structure, while the exterior cavity favours its formation. This ability to exploit structure within a pre-protein is an unexplored area of protein transport, which may apply to other protein transporters, such as those of the endoplasmic reticulum and mitochondria.
Data availability
All data generated during this study are included in the Figures of the mansucript. EPR data is available at https://doi.org/10.17630/0fedaeec-7e27-4876-a6d1-cda2d3a6799c.
-
EPR data from ATP-induced asymmetric pre-protein folding as a driver of protein translocation through the Sec machinerydoi:10.17630/0fedaeec-7e27-4876-a6d1-cda2d3a6799c.
Article and author information
Author details
Funding
Biotechnology and Biological Sciences Research Council (BB/M003604/1)
- Robin A Corey
- William John Allen
- Ian Collinson
Wellcome (104632)
- William John Allen
- Ian Collinson
Royal Society (University Research Fellowship)
- Janet E Lovett
Wellcome (109854/Z/15/Z)
- Zainab Ahdash
- Argyris Politis
Wellcome (099149/Z/12/Z)
- Anokhi Shah
- Janet E Lovett
European Regional Development Fund (CZ.02.1.01/0.0/0.0/15_003/0000441)
- Tomas Fessl
Engineering and Physical Sciences Research Council (ep/m508214/1)
- Anokhi Shah
Biotechnology and Biological Sciences Research Council (BB/I008675/1)
- Robin A Corey
- William John Allen
- Ian Collinson
Biotechnology and Biological Sciences Research Council (BB/N015126/1)
- Robin A Corey
- William John Allen
- Ian Collinson
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Reviewing Editor
- Yibing Shan, DE Shaw Research, United States
Version history
- Received: September 7, 2018
- Accepted: January 1, 2019
- Accepted Manuscript published: January 2, 2019 (version 1)
- Version of Record published: January 16, 2019 (version 2)
- Version of Record updated: July 4, 2019 (version 3)
Copyright
© 2019, Corey et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,810
- Page views
-
- 459
- Downloads
-
- 22
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, Scopus, PubMed Central.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Microbiology and Infectious Disease
Diverse chemical modifications fine-tune the function and metabolism of tRNA. Although tRNA modification is universal in all kingdoms of life, profiles of modifications, their functions, and physiological roles have not been elucidated in most organisms including the human pathogen, Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis. To identify physiologically important modifications, we surveyed the tRNA of Mtb, using tRNA sequencing (tRNA-seq) and genome-mining. Homology searches identified 23 candidate tRNA modifying enzymes that are predicted to create 16 tRNA modifications across all tRNA species. Reverse transcription-derived error signatures in tRNA-seq predicted the sites and presence of nine modifications. Several chemical treatments prior to tRNA-seq expanded the number of predictable modifications. Deletion of Mtb genes encoding two modifying enzymes, TruB and MnmA, eliminated their respective tRNA modifications, validating the presence of modified sites in tRNA species. Furthermore, the absence of mnmA attenuated Mtb growth in macrophages, suggesting that MnmA-dependent tRNA uridine sulfation contributes to Mtb intracellular growth. Our results lay the foundation for unveiling the roles of tRNA modifications in Mtb pathogenesis and developing new therapeutics against tuberculosis.
-
- Biochemistry and Chemical Biology
- Cancer Biology
Identification oncogenes is fundamental to revealing the molecular basis of cancer. Here, we found that FOXP2 is overexpressed in human prostate cancer cells and prostate tumors, but its expression is absent in normal prostate epithelial cells and low in benign prostatic hyperplasia. FOXP2 is a FOX transcription factor family member and tightly associated with vocal development. To date, little is known regarding the link of FOXP2 to prostate cancer. We observed that high FOXP2 expression and frequent amplification are significantly associated with high Gleason score. Ectopic expression of FOXP2 induces malignant transformation of mouse NIH3T3 fibroblasts and human prostate epithelial cell RWPE-1. Conversely, FOXP2 knockdown suppresses the proliferation of prostate cancer cells. Transgenic overexpression of FOXP2 in the mouse prostate causes prostatic intraepithelial neoplasia. Overexpression of FOXP2 aberrantly activates oncogenic MET signaling and inhibition of MET signaling effectively reverts the FOXP2-induced oncogenic phenotype. CUT&Tag assay identified FOXP2-binding sites located in MET and its associated gene HGF. Additionally, the novel recurrent FOXP2-CPED1 fusion identified in prostate tumors results in high expression of truncated FOXP2, which exhibit a similar capacity for malignant transformation. Together, our data indicate that FOXP2 is involved in tumorigenicity of prostate.