HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses

  1. Simon Langer
  2. Christian Hammer
  3. Kristina Hopfensperger
  4. Lukas Klein
  5. Dominik Hotter
  6. Paul D De Jesus
  7. Kristina M Herbert
  8. Lars Pache
  9. Nikaïa Smith
  10. Johannes A van der Merwe
  11. Sumit K Chanda
  12. Jacques Fellay
  13. Frank Kirchhoff
  14. Daniel Sauter  Is a corresponding author
  1. Sanford Burnham Prebys Medical Discovery Institute, United States
  2. École Polytechnique Fédérale de Lausanne, Switzerland
  3. Ulm University Medical Center, Germany

Abstract

Many viral pathogens target innate sensing cascades and/or cellular transcription factors to suppress antiviral immune responses. Here, we show that the accessory viral protein U (Vpu) of HIV-1 exerts broad immunosuppressive effects by inhibiting activation of the transcription factor NF-κB. Global transcriptional profiling of infected CD4+ T-cells revealed that vpu-deficient HIV-1 strains induce substantially stronger immune responses than the respective wild type viruses. Gene set enrichment analyses and cytokine arrays showed that Vpu suppresses the expression of NF-κB targets including interferons and restriction factors. Mutational analyses demonstrated that this immunosuppressive activity of Vpu is independent of its ability to counteract the restriction factor and innate sensor tetherin. However, Vpu-mediated inhibition of immune activation required an arginine residue in the cytoplasmic domain that is critical for blocking NF-κB signaling downstream of tetherin. In summary, our findings demonstrate that HIV-1 Vpu potently suppresses NF-κB-elicited antiviral immune responses at the transcriptional level.

Data availability

RNA sequencing data have been uploaded to the Gene Expression Omnibus (GEO) database (accession number #GSE117655).

The following data sets were generated

Article and author information

Author details

  1. Simon Langer

    Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Christian Hammer

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4548-7548
  3. Kristina Hopfensperger

    Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Lukas Klein

    Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  5. Dominik Hotter

    Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Paul D De Jesus

    Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Kristina M Herbert

    Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Lars Pache

    Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Nikaïa Smith

    Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  10. Johannes A van der Merwe

    Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  11. Sumit K Chanda

    Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Jacques Fellay

    School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8240-939X
  13. Frank Kirchhoff

    Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
    Competing interests
    The authors declare that no competing interests exist.
  14. Daniel Sauter

    Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
    For correspondence
    daniel.sauter@uni-ulm.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7665-0040

Funding

Deutsche Forschungsgemeinschaft (SPP 1923)

  • Frank Kirchhoff
  • Daniel Sauter

European Research Council

  • Frank Kirchhoff

International Graduate School in Molecular Medicine Ulm

  • Simon Langer
  • Kristina Hopfensperger
  • Dominik Hotter

Deutsche Forschungsgemeinschaft (404687549)

  • Simon Langer

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: The use of human PBMCs was approved by the Ethics Committee of the Ulm University Medical Center (application #50/16). All donors were anonymized and provided informed written consent.

Copyright

© 2019, Langer et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,350
    views
  • 527
    downloads
  • 60
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Simon Langer
  2. Christian Hammer
  3. Kristina Hopfensperger
  4. Lukas Klein
  5. Dominik Hotter
  6. Paul D De Jesus
  7. Kristina M Herbert
  8. Lars Pache
  9. Nikaïa Smith
  10. Johannes A van der Merwe
  11. Sumit K Chanda
  12. Jacques Fellay
  13. Frank Kirchhoff
  14. Daniel Sauter
(2019)
HIV-1 Vpu is a potent transcriptional suppressor of NF-κB-elicited antiviral immune responses
eLife 8:e41930.
https://doi.org/10.7554/eLife.41930

Share this article

https://doi.org/10.7554/eLife.41930

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Benita Martin-Castaño, Patricia Diez-Echave ... Julio Galvez
    Research Article

    Coronavirus disease 2019 (COVID-19) is a respiratory illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that displays great variability in clinical phenotype. Many factors have been described to be correlated with its severity, and microbiota could play a key role in the infection, progression, and outcome of the disease. SARS-CoV-2 infection has been associated with nasopharyngeal and gut dysbiosis and higher abundance of opportunistic pathogens. To identify new prognostic markers for the disease, a multicentre prospective observational cohort study was carried out in COVID-19 patients divided into three cohorts based on symptomatology: mild (n = 24), moderate (n = 51), and severe/critical (n = 31). Faecal and nasopharyngeal samples were taken, and the microbiota was analysed. Linear discriminant analysis identified Mycoplasma salivarium, Prevotella dentalis, and Haemophilus parainfluenzae as biomarkers of severe COVID-19 in nasopharyngeal microbiota, while Prevotella bivia and Prevotella timonensis were defined in faecal microbiota. Additionally, a connection between faecal and nasopharyngeal microbiota was identified, with a significant ratio between P. timonensis (faeces) and P. dentalis and M. salivarium (nasopharyngeal) abundances found in critically ill patients. This ratio could serve as a novel prognostic tool for identifying severe COVID-19 cases.

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Yan Zhao, Hanshuo Zhu ... Li Sun
    Research Article

    Type III secretion system (T3SS) is a virulence apparatus existing in many bacterial pathogens. Structurally, T3SS consists of the base, needle, tip, and translocon. The NLRC4 inflammasome is the major receptor for T3SS needle and basal rod proteins. Whether other T3SS components are recognized by NLRC4 is unclear. In this study, using Edwardsiella tarda as a model intracellular pathogen, we examined T3SS−inflammasome interaction and its effect on cell death. E. tarda induced pyroptosis in a manner that required the bacterial translocon and the host inflammasome proteins of NLRC4, NLRP3, ASC, and caspase 1/4. The translocon protein EseB triggered NLRC4/NAIP-mediated pyroptosis by binding NAIP via its C-terminal region, particularly the terminal 6 residues (T6R). EseB homologs exist widely in T3SS-positive bacteria and share high identities in T6R. Like E. tarda EseB, all of the representatives of the EseB homologs exhibited T6R-dependent NLRC4 activation ability. Together these results revealed the function and molecular mechanism of EseB to induce host cell pyroptosis and suggested a highly conserved inflammasome-activation mechanism of T3SS translocon in bacterial pathogens.