1. Evolutionary Biology
  2. Microbiology and Infectious Disease
Download icon

Dengue genetic divergence generates within-serotype antigenic variation, but serotypes dominate evolutionary dynamics

  1. Sidney M Bell
  2. Leah Katzelnick
  3. Trevor Bedford  Is a corresponding author
  1. Fred Hutchinson Cancer Research Center, United States
  2. University of California, Berkeley, United States
Research Article
  • Cited 8
  • Views 1,528
  • Annotations
Cite this article as: eLife 2019;8:e42496 doi: 10.7554/eLife.42496

Abstract

Dengue virus (DENV) exists as four genetically distinct serotypes, each of which is historically assumed to be antigenically uniform. However, recent analyses suggest that antigenic heterogeneity may exist within each serotype, but its source, extent and impact remain unclear. Here, we construct a sequence-based model to directly map antigenic change to underlying genetic divergence. We identify 49 specific substitutions and four colinear substitution clusters that robustly predict dengue antigenic relationships. We report moderate antigenic diversity within each serotype, resulting in variation in genotype-specific patterns of heterotypic cross-neutralization. We also quantify the impact of antigenic variation on real-world DENV population dynamics, and find that serotype-level antigenic fitness is a dominant driver of dengue clade turnover. These results provide a more nuanced understanding of the relationship between dengue genetic and antigenic evolution, and quantify the effect of antigenic fitness on dengue evolutionary dynamics.

Article and author information

Author details

  1. Sidney M Bell

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Leah Katzelnick

    Division of Infectious Diseases and Vaccinology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Trevor Bedford

    Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, United States
    For correspondence
    tbedford@fredhutch.org
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4039-5794

Funding

National Science Foundation (DGE-1256082)

  • Sidney M Bell

Pew Charitable Trusts

  • Trevor Bedford

National Institute of General Medical Sciences (R35GM119774-01)

  • Trevor Bedford

National Institute of Allergy and Infectious Diseases (R01AI114703-01)

  • Leah Katzelnick

National Institute of Allergy and Infectious Diseases (P01AI106695)

  • Leah Katzelnick

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Neil M Ferguson, Imperial College London, United Kingdom

Publication history

  1. Received: October 2, 2018
  2. Accepted: August 5, 2019
  3. Accepted Manuscript published: August 6, 2019 (version 1)
  4. Version of Record published: September 6, 2019 (version 2)

Copyright

© 2019, Bell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,528
    Page views
  • 269
    Downloads
  • 8
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Evolutionary Biology
    Daniel Sauter, Frank Kirchhoff
    Review Article

    Human cells are equipped with a plethora of antiviral proteins protecting them against invading viral pathogens. In contrast to apoptotic or pyroptotic cell death, which serves as ultima ratio to combat viral infections, these cell-intrinsic restriction factors may prevent or at least slow down viral spread while allowing the host cell to survive. Nevertheless, their antiviral activity may also have detrimental effects on the host. While the molecular mechanisms underlying the antiviral activity of restriction factors are frequently well investigated, potential undesired effects of their antiviral functions on the host cell are hardly explored. With a focus on antiretroviral proteins, we summarize in this review how individual restriction factors may exert adverse effects as trade-off for efficient defense against attacking pathogens.

    1. Ecology
    2. Evolutionary Biology
    Morten Schiøtt, Jacobus J Boomsma
    Research Article

    The symbiotic partnership between leaf-cutting ants and fungal cultivars processes plant biomass via ant fecal fluid mixed with chewed plant substrate before fungal degradation. Here we present a full proteome of the fecal fluid of Acromyrmex leaf-cutting ants, showing that most proteins function as biomass degrading enzymes and that ca. 85% are produced by the fungus and ingested, but not digested, by the ants. Hydrogen peroxide producing oxidoreductases were remarkably common in the proteome, inspiring us to test a scenario in which hydrogen peroxide reacts with iron to form reactive oxygen radicals after which oxidized iron is reduced by other fecal-fluid enzymes. Our biochemical assays confirmed that these so-called Fenton reactions do indeed take place in special substrate pellets, presumably to degrade plant cell wall polymers. This implies that the symbiotic partnership manages a combination of oxidative and enzymatic biomass degradation, an achievement that surpasses current human bioconversion technology.