Abstract

Bacterial spillage into a sterile environment following intestinal hollow-organ perforation leads to peritonitis and fulminant sepsis. Outcome of sepsis critically depends on macrophage activation by extracellular ATP-release and associated autocrine signaling via purinergic receptors. ATP-release mechanisms, however, are poorly understood. Here we show that TLR-2 and -4 agonists trigger ATP-release via Connexin-43 hemichannels in macrophages leading to poor sepsis survival. In humans, Connexin-43 was upregulated on macrophages isolated from the peritoneal cavity in patients with peritonitis but not in healthy controls. Using a murine peritonitis/sepsis model, we identified increased Connexin-43 expression in peritoneal and hepatic macrophages. onditional Lyz2cre/creGja1flox/flox mice were developed to specifically assess Connexin-43 impact in macrophages. Both macrophage-specific Connexin-43 deletion and pharmacological Connexin-43 blockade were associated with reduced cytokine secretion by macrophages in response to LPS and CLP, ultimately resulting in increased survival. In conclusion, inhibition of autocrine Connexin-43-dependent ATP signaling on macrophages improves sepsis outcome.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Michel Dosch

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4087-4293
  2. Joël Zindel

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Fadi Jebbawi

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Melin

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Sanchez-Taltavull

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Deborah Stroka

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Candinas

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Guido Beldi

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    For correspondence
    guido.beldi@insel.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9914-3807

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (323530_158117)

  • Michel Dosch

Novartis Stiftung für Medizinisch-Biologische Forschung (14C160)

  • Michel Dosch
  • Guido Beldi

University of Bern (Interdisciplinary Grant)

  • Guido Beldi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (166594)

  • Guido Beldi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (146986)

  • Guido Beldi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were planned, carried out and reported in agreement with current 3R and ARRIVE guidelines (Kilkenny et al., 2010) and approved according to Swiss animal protection laws by the Veterinary Authorities of the Canton Bern, Switzerland (license no. BE 4/15).

Human subjects: All human studies were approved by the Ethical Commission of the Canton Bern and written informed consent was obtained from all subjects. Peritoneal fluid collection at the beginning of an operation was included in a larger clinical trial, whose protocol is published on ClinicalTrials.gov (NCT03554148, Study ID Number: 2017-00573).

Copyright

© 2019, Dosch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,154
    views
  • 799
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michel Dosch
  2. Joël Zindel
  3. Fadi Jebbawi
  4. Nicolas Melin
  5. Daniel Sanchez-Taltavull
  6. Deborah Stroka
  7. Daniel Candinas
  8. Guido Beldi
(2019)
Connexin-43-dependent ATP release mediates macrophage activation during sepsis
eLife 8:e42670.
https://doi.org/10.7554/eLife.42670

Share this article

https://doi.org/10.7554/eLife.42670

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Malika Hale, Kennidy K Takehara ... Marion Pepper
    Research Article

    Pseudomonas aeruginosa (PA) is an opportunistic, frequently multidrug-resistant pathogen that can cause severe infections in hospitalized patients. Antibodies against the PA virulence factor, PcrV, protect from death and disease in a variety of animal models. However, clinical trials of PcrV-binding antibody-based products have thus far failed to demonstrate benefit. Prior candidates were derivations of antibodies identified using protein-immunized animal systems and required extensive engineering to optimize binding and/or reduce immunogenicity. Of note, PA infections are common in people with cystic fibrosis (pwCF), who are generally believed to mount normal adaptive immune responses. Here, we utilized a tetramer reagent to detect and isolate PcrV-specific B cells in pwCF and, via single-cell sorting and paired-chain sequencing, identified the B cell receptor (BCR) variable region sequences that confer PcrV-specificity. We derived multiple high affinity anti-PcrV monoclonal antibodies (mAbs) from PcrV-specific B cells across three donors, including mAbs that exhibit potent anti-PA activity in a murine pneumonia model. This robust strategy for mAb discovery expands what is known about PA-specific B cells in pwCF and yields novel mAbs with potential for future clinical use.

    1. Cell Biology
    2. Immunology and Inflammation
    Alejandro Rosell, Agata Adelajda Krygowska ... Esther Castellano Sanchez
    Research Article

    Macrophages are crucial in the body’s inflammatory response, with tightly regulated functions for optimal immune system performance. Our study reveals that the RAS–p110α signalling pathway, known for its involvement in various biological processes and tumourigenesis, regulates two vital aspects of the inflammatory response in macrophages: the initial monocyte movement and later-stage lysosomal function. Disrupting this pathway, either in a mouse model or through drug intervention, hampers the inflammatory response, leading to delayed resolution and the development of more severe acute inflammatory reactions in live models. This discovery uncovers a previously unknown role of the p110α isoform in immune regulation within macrophages, offering insight into the complex mechanisms governing their function during inflammation and opening new avenues for modulating inflammatory responses.