Abstract

Bacterial spillage into a sterile environment following intestinal hollow-organ perforation leads to peritonitis and fulminant sepsis. Outcome of sepsis critically depends on macrophage activation by extracellular ATP-release and associated autocrine signaling via purinergic receptors. ATP-release mechanisms, however, are poorly understood. Here we show that TLR-2 and -4 agonists trigger ATP-release via Connexin-43 hemichannels in macrophages leading to poor sepsis survival. In humans, Connexin-43 was upregulated on macrophages isolated from the peritoneal cavity in patients with peritonitis but not in healthy controls. Using a murine peritonitis/sepsis model, we identified increased Connexin-43 expression in peritoneal and hepatic macrophages. onditional Lyz2cre/creGja1flox/flox mice were developed to specifically assess Connexin-43 impact in macrophages. Both macrophage-specific Connexin-43 deletion and pharmacological Connexin-43 blockade were associated with reduced cytokine secretion by macrophages in response to LPS and CLP, ultimately resulting in increased survival. In conclusion, inhibition of autocrine Connexin-43-dependent ATP signaling on macrophages improves sepsis outcome.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Michel Dosch

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4087-4293
  2. Joël Zindel

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Fadi Jebbawi

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Melin

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Sanchez-Taltavull

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Deborah Stroka

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Candinas

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Guido Beldi

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    For correspondence
    guido.beldi@insel.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9914-3807

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (323530_158117)

  • Michel Dosch

Novartis Stiftung für Medizinisch-Biologische Forschung (14C160)

  • Michel Dosch
  • Guido Beldi

University of Bern (Interdisciplinary Grant)

  • Guido Beldi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (166594)

  • Guido Beldi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (146986)

  • Guido Beldi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were planned, carried out and reported in agreement with current 3R and ARRIVE guidelines (Kilkenny et al., 2010) and approved according to Swiss animal protection laws by the Veterinary Authorities of the Canton Bern, Switzerland (license no. BE 4/15).

Human subjects: All human studies were approved by the Ethical Commission of the Canton Bern and written informed consent was obtained from all subjects. Peritoneal fluid collection at the beginning of an operation was included in a larger clinical trial, whose protocol is published on ClinicalTrials.gov (NCT03554148, Study ID Number: 2017-00573).

Copyright

© 2019, Dosch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,074
    views
  • 786
    downloads
  • 82
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michel Dosch
  2. Joël Zindel
  3. Fadi Jebbawi
  4. Nicolas Melin
  5. Daniel Sanchez-Taltavull
  6. Deborah Stroka
  7. Daniel Candinas
  8. Guido Beldi
(2019)
Connexin-43-dependent ATP release mediates macrophage activation during sepsis
eLife 8:e42670.
https://doi.org/10.7554/eLife.42670

Share this article

https://doi.org/10.7554/eLife.42670

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.