Abstract

Bacterial spillage into a sterile environment following intestinal hollow-organ perforation leads to peritonitis and fulminant sepsis. Outcome of sepsis critically depends on macrophage activation by extracellular ATP-release and associated autocrine signaling via purinergic receptors. ATP-release mechanisms, however, are poorly understood. Here we show that TLR-2 and -4 agonists trigger ATP-release via Connexin-43 hemichannels in macrophages leading to poor sepsis survival. In humans, Connexin-43 was upregulated on macrophages isolated from the peritoneal cavity in patients with peritonitis but not in healthy controls. Using a murine peritonitis/sepsis model, we identified increased Connexin-43 expression in peritoneal and hepatic macrophages. onditional Lyz2cre/creGja1flox/flox mice were developed to specifically assess Connexin-43 impact in macrophages. Both macrophage-specific Connexin-43 deletion and pharmacological Connexin-43 blockade were associated with reduced cytokine secretion by macrophages in response to LPS and CLP, ultimately resulting in increased survival. In conclusion, inhibition of autocrine Connexin-43-dependent ATP signaling on macrophages improves sepsis outcome.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Michel Dosch

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4087-4293
  2. Joël Zindel

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  3. Fadi Jebbawi

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  4. Nicolas Melin

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  5. Daniel Sanchez-Taltavull

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  6. Deborah Stroka

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel Candinas

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    Competing interests
    The authors declare that no competing interests exist.
  8. Guido Beldi

    Department for BioMedical Research, University of Bern, Bern, Switzerland
    For correspondence
    guido.beldi@insel.ch
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9914-3807

Funding

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (323530_158117)

  • Michel Dosch

Novartis Stiftung für Medizinisch-Biologische Forschung (14C160)

  • Michel Dosch
  • Guido Beldi

University of Bern (Interdisciplinary Grant)

  • Guido Beldi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (166594)

  • Guido Beldi

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (146986)

  • Guido Beldi

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: Animal experiments were planned, carried out and reported in agreement with current 3R and ARRIVE guidelines (Kilkenny et al., 2010) and approved according to Swiss animal protection laws by the Veterinary Authorities of the Canton Bern, Switzerland (license no. BE 4/15).

Human subjects: All human studies were approved by the Ethical Commission of the Canton Bern and written informed consent was obtained from all subjects. Peritoneal fluid collection at the beginning of an operation was included in a larger clinical trial, whose protocol is published on ClinicalTrials.gov (NCT03554148, Study ID Number: 2017-00573).

Copyright

© 2019, Dosch et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,147
    views
  • 798
    downloads
  • 84
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Michel Dosch
  2. Joël Zindel
  3. Fadi Jebbawi
  4. Nicolas Melin
  5. Daniel Sanchez-Taltavull
  6. Deborah Stroka
  7. Daniel Candinas
  8. Guido Beldi
(2019)
Connexin-43-dependent ATP release mediates macrophage activation during sepsis
eLife 8:e42670.
https://doi.org/10.7554/eLife.42670

Share this article

https://doi.org/10.7554/eLife.42670

Further reading

    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Ainhoa Arbués, Sarah Schmidiger ... Damien Portevin
    Research Article

    The members of the Mycobacterium tuberculosis complex (MTBC) causing human tuberculosis comprise 10 phylogenetic lineages that differ in their geographical distribution. The human consequences of this phylogenetic diversity remain poorly understood. Here, we assessed the phenotypic properties at the host-pathogen interface of 14 clinical strains representing five major MTBC lineages. Using a human in vitro granuloma model combined with bacterial load assessment, microscopy, flow cytometry, and multiplexed-bead arrays, we observed considerable intra-lineage diversity. Yet, modern lineages were overall associated with increased growth rate and more pronounced granulomatous responses. MTBC lineages exhibited distinct propensities to accumulate triglyceride lipid droplets—a phenotype associated with dormancy—that was particularly pronounced in lineage 2 and reduced in lineage 3 strains. The most favorable granuloma responses were associated with strong CD4 and CD8 T cell activation as well as inflammatory responses mediated by CXCL9, granzyme B, and TNF. Both of which showed consistent negative correlation with bacterial proliferation across genetically distant MTBC strains of different lineages. Taken together, our data indicate that different virulence strategies and protective immune traits associate with MTBC genetic diversity at lineage and strain level.

    1. Immunology and Inflammation
    Denise M Monack
    Insight

    Macrophages control intracellular pathogens like Salmonella by using two caspase enzymes at different times during infection.