Nationally-representative serostudy of dengue in Bangladesh allows generalizable disease burden estimates

  1. Henrik Salje  Is a corresponding author
  2. Kishor Kumar Paul
  3. Repon Paul
  4. Isabel Rodriguez-Barraquer
  5. Ziaur Rahman
  6. Mohammad Shafiul Alam
  7. Mahmadur Rahman
  8. Hasan Mohammad Al-Amin
  9. James Heffelfinger
  10. Emily Gurley
  1. Institut Pasteur, France
  2. icddr,b, Bangladesh
  3. University of California, San Francisco, United States
  4. Institute of Epidemiology, Disease Control and Research, Bangladesh
  5. Centers for Disease Control and Prevention, United States
  6. Johns Hopkins Bloomberg School of Public Health, United States

Abstract

Serostudies are needed to answer generalizable questions on disease risk. However, recruitment is usually biased by age or location. We present a nationally-representative study for dengue from 70 communities in Bangladesh. We collected data on risk factors, trapped mosquitoes and tested serum for IgG. Out of 5,866 individuals, 24% had evidence of historic infection, ranging from 3% in the north to >80% in Dhaka. Being male (aOR:1.8, [95%CI:1.5-2.0]) and recent travel (aOR:1.3, [1.1-1.8]) were linked to seropositivity. Using catalytic models, we estimate that 40 million [34.3-47.2] people have been infected with 2.4 million ([1.3-4.5]) annual infections. Had we visited only 20 communities, seropositivity estimates would have ranged from 13% to 37%, highlighting the lack of representativeness generated by small numbers of communities. Our findings have implications for both the design of serosurveys and tackling dengue in Bangladesh.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files with the exception of precise coordinate information of households.

Article and author information

Author details

  1. Henrik Salje

    Mathematical Modelling of Infectious Diseases, Institut Pasteur, Paris, France
    For correspondence
    hsalje@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3626-4254
  2. Kishor Kumar Paul

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6054-3571
  3. Repon Paul

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  4. Isabel Rodriguez-Barraquer

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6784-1021
  5. Ziaur Rahman

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  6. Mohammad Shafiul Alam

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  7. Mahmadur Rahman

    Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  8. Hasan Mohammad Al-Amin

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  9. James Heffelfinger

    Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Emily Gurley

    Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8648-9403

Funding

Centers for Disease Control and Prevention

  • Henrik Salje
  • Emily Gurley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: This study was approved by the icddr,b ethical review board. (protocol number PR-14058). The U.S. Centers for Disease Control and Prevention relied on icddr,b's ethical review board approval. All adult participants provided written, informed consent after receiving detailed explanation of the study and procedures. Parents/guardians of all child participants were asked to provide written, informed consent on their behalf.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 4,328
    views
  • 589
    downloads
  • 73
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Henrik Salje
  2. Kishor Kumar Paul
  3. Repon Paul
  4. Isabel Rodriguez-Barraquer
  5. Ziaur Rahman
  6. Mohammad Shafiul Alam
  7. Mahmadur Rahman
  8. Hasan Mohammad Al-Amin
  9. James Heffelfinger
  10. Emily Gurley
(2019)
Nationally-representative serostudy of dengue in Bangladesh allows generalizable disease burden estimates
eLife 8:e42869.
https://doi.org/10.7554/eLife.42869

Share this article

https://doi.org/10.7554/eLife.42869

Further reading

    1. Epidemiology and Global Health
    Marina Padilha, Victor Nahuel Keller ... Gilberto Kac
    Research Article

    Background: The role of circulating metabolites on child development is understudied. We investigated associations between children's serum metabolome and early childhood development (ECD).

    Methods: Untargeted metabolomics was performed on serum samples of 5,004 children aged 6-59 months, a subset of participants from the Brazilian National Survey on Child Nutrition (ENANI-2019). ECD was assessed using the Survey of Well-being of Young Children's milestones questionnaire. The graded response model was used to estimate developmental age. Developmental quotient (DQ) was calculated as the developmental age divided by chronological age. Partial least square regression selected metabolites with a variable importance projection ≥ 1. The interaction between significant metabolites and the child's age was tested.

    Results: Twenty-eight top-ranked metabolites were included in linear regression models adjusted for the child's nutritional status, diet quality, and infant age. Cresol sulfate (β = -0.07; adjusted-p < 0.001), hippuric acid (β = -0.06; adjusted-p < 0.001), phenylacetylglutamine (β = -0.06; adjusted-p < 0.001), and trimethylamine-N-oxide (β = -0.05; adjusted-p = 0.002) showed inverse associations with DQ. We observed opposite directions in the association of DQ for creatinine (for children aged -1 SD: β = -0.05; p =0.01; +1 SD: β = 0.05; p =0.02) and methylhistidine (-1 SD: β = - 0.04; p =0.04; +1 SD: β = 0.04; p =0.03).

    Conclusion: Serum biomarkers, including dietary and microbial-derived metabolites involved in the gut-brain axis, may potentially be used to track children at risk for developmental delays.

    Funding: Supported by the Brazilian Ministry of Health and the Brazilian National Research Council.

    1. Epidemiology and Global Health
    Riccardo Spott, Mathias W Pletz ... Christian Brandt
    Research Article

    Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking lineage spread, we investigated the potential of combining mobile service data and fine-granular metadata (such as postal codes and genomic data) to advance integrated genomic surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 6500 SARS-CoV-2 Alpha genomes (B.1.1.7) across 7 months within Thuringia while collecting patients’ isolation dates and postal codes. Our dataset is complemented by over 66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We identified the existence and spread of nine persistent mutation variants within the Alpha lineage, seven of which formed separate phylogenetic clusters with different spreading patterns in Thuringia. The remaining two are subclusters. Mobile service data can indicate these clusters’ spread and highlight a potential sampling bias, especially of low-prevalence variants. Thereby, mobile service data can be used either retrospectively to assess surveillance coverage and efficiency from already collected data or to actively guide part of a surveillance sampling process to districts where these variants are expected to emerge. The latter concept was successfully implemented as a proof-of-concept for a mobility-guided sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is a valuable tool for more targeted and responsive surveillance.