Nationally-representative serostudy of dengue in Bangladesh allows generalizable disease burden estimates

  1. Henrik Salje  Is a corresponding author
  2. Kishor Kumar Paul
  3. Repon Paul
  4. Isabel Rodriguez-Barraquer
  5. Ziaur Rahman
  6. Mohammad Shafiul Alam
  7. Mahmadur Rahman
  8. Hasan Mohammad Al-Amin
  9. James Heffelfinger
  10. Emily Gurley
  1. Institut Pasteur, France
  2. icddr,b, Bangladesh
  3. University of California, San Francisco, United States
  4. Institute of Epidemiology, Disease Control and Research, Bangladesh
  5. Centers for Disease Control and Prevention, United States
  6. Johns Hopkins Bloomberg School of Public Health, United States

Abstract

Serostudies are needed to answer generalizable questions on disease risk. However, recruitment is usually biased by age or location. We present a nationally-representative study for dengue from 70 communities in Bangladesh. We collected data on risk factors, trapped mosquitoes and tested serum for IgG. Out of 5,866 individuals, 24% had evidence of historic infection, ranging from 3% in the north to >80% in Dhaka. Being male (aOR:1.8, [95%CI:1.5-2.0]) and recent travel (aOR:1.3, [1.1-1.8]) were linked to seropositivity. Using catalytic models, we estimate that 40 million [34.3-47.2] people have been infected with 2.4 million ([1.3-4.5]) annual infections. Had we visited only 20 communities, seropositivity estimates would have ranged from 13% to 37%, highlighting the lack of representativeness generated by small numbers of communities. Our findings have implications for both the design of serosurveys and tackling dengue in Bangladesh.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files with the exception of precise coordinate information of households.

Article and author information

Author details

  1. Henrik Salje

    Mathematical Modelling of Infectious Diseases, Institut Pasteur, Paris, France
    For correspondence
    hsalje@pasteur.fr
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3626-4254
  2. Kishor Kumar Paul

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6054-3571
  3. Repon Paul

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  4. Isabel Rodriguez-Barraquer

    Department of Medicine, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6784-1021
  5. Ziaur Rahman

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  6. Mohammad Shafiul Alam

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  7. Mahmadur Rahman

    Institute of Epidemiology, Disease Control and Research, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  8. Hasan Mohammad Al-Amin

    Program for Emerging Infections, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
    Competing interests
    The authors declare that no competing interests exist.
  9. James Heffelfinger

    Division of Global Health Protection, Centers for Disease Control and Prevention, Atlanta, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Emily Gurley

    Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8648-9403

Funding

Centers for Disease Control and Prevention

  • Henrik Salje
  • Emily Gurley

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ben Cooper, Mahidol Oxford Tropical Medicine Research Unit, Thailand

Ethics

Human subjects: This study was approved by the icddr,b ethical review board. (protocol number PR-14058). The U.S. Centers for Disease Control and Prevention relied on icddr,b's ethical review board approval. All adult participants provided written, informed consent after receiving detailed explanation of the study and procedures. Parents/guardians of all child participants were asked to provide written, informed consent on their behalf.

Version history

  1. Received: October 15, 2018
  2. Accepted: April 4, 2019
  3. Accepted Manuscript published: April 8, 2019 (version 1)
  4. Version of Record published: May 13, 2019 (version 2)
  5. Version of Record updated: May 16, 2019 (version 3)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 3,989
    views
  • 530
    downloads
  • 58
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Henrik Salje
  2. Kishor Kumar Paul
  3. Repon Paul
  4. Isabel Rodriguez-Barraquer
  5. Ziaur Rahman
  6. Mohammad Shafiul Alam
  7. Mahmadur Rahman
  8. Hasan Mohammad Al-Amin
  9. James Heffelfinger
  10. Emily Gurley
(2019)
Nationally-representative serostudy of dengue in Bangladesh allows generalizable disease burden estimates
eLife 8:e42869.
https://doi.org/10.7554/eLife.42869

Share this article

https://doi.org/10.7554/eLife.42869

Further reading

    1. Epidemiology and Global Health
    Zhanwei Du, Lin Wang ... Lauren A Meyers
    Short Report

    Paxlovid, a SARS-CoV-2 antiviral, not only prevents severe illness but also curtails viral shedding, lowering transmission risks from treated patients. By fitting a mathematical model of within-host Omicron viral dynamics to electronic health records data from 208 hospitalized patients in Hong Kong, we estimate that Paxlovid can inhibit over 90% of viral replication. However, its effectiveness critically depends on the timing of treatment. If treatment is initiated three days after symptoms first appear, we estimate a 17% chance of a post-treatment viral rebound and a 12% (95% CI: 0%-16%) reduction in overall infectiousness for non-rebound cases. Earlier treatment significantly elevates the risk of rebound without further reducing infectiousness, whereas starting beyond five days reduces its efficacy in curbing peak viral shedding. Among the 104 patients who received Paxlovid, 62% began treatment within an optimal three-to-five-day day window after symptoms appeared. Our findings indicate that broader global access to Paxlovid, coupled with appropriately timed treatment, can mitigate the severity and transmission of SARS-Cov-2.

    1. Epidemiology and Global Health
    Yuchen Zhang, Yitang Sun ... Kaixiong Ye
    Research Article

    Background:

    Circulating omega-3 and omega-6 polyunsaturated fatty acids (PUFAs) have been associated with various chronic diseases and mortality, but results are conflicting. Few studies examined the role of omega-6/omega-3 ratio in mortality.

    Methods:

    We investigated plasma omega-3 and omega-6 PUFAs and their ratio in relation to all-cause and cause-specific mortality in a large prospective cohort, the UK Biobank. Of 85,425 participants who had complete information on circulating PUFAs, 6461 died during follow-up, including 2794 from cancer and 1668 from cardiovascular disease (CVD). Associations were estimated by multivariable Cox proportional hazards regression with adjustment for relevant risk factors.

    Results:

    Risk for all three mortality outcomes increased as the ratio of omega-6/omega-3 PUFAs increased (all Ptrend <0.05). Comparing the highest to the lowest quintiles, individuals had 26% (95% CI, 15–38%) higher total mortality, 14% (95% CI, 0–31%) higher cancer mortality, and 31% (95% CI, 10–55%) higher CVD mortality. Moreover, omega-3 and omega-6 PUFAs in plasma were all inversely associated with all-cause, cancer, and CVD mortality, with omega-3 showing stronger effects.

    Conclusions:

    Using a population-based cohort in UK Biobank, our study revealed a strong association between the ratio of circulating omega-6/omega-3 PUFAs and the risk of all-cause, cancer, and CVD mortality.

    Funding:

    Research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institute of Health under the award number R35GM143060 (KY). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.