Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways

Abstract

It is commonly assumed that the brain's neural coding strategies are adapted to the statistics of natural stimuli. Specifically, to maximize information transmission, a sensory neuron's tuning function should effectively oppose the decaying stimulus spectral power, such that the neural response is temporally decorrelated (i.e., 'whitened'). However, theory predicts that the structure of neuronal variability also plays an essential role in determining how coding is optimized. Here, we provide experimental evidence supporting this view by recording from neurons in early vestibular pathways during naturalistic self-motion. We found that central vestibular neurons displayed temporally whitened responses that could not be explained by their tuning alone. Rather, computational modeling and analysis revealed that neuronal variability and tuning were matched to effectively complement natural stimulus statistics, thereby achieving temporal decorrelation and optimizing information transmission. Taken together, our findings reveal a novel strategy by which neural variability contributes to optimized processing of naturalistic stimuli.

Data availability

All data have been deposited on Figshare under the URL https://doi.org/10.6084/m9.figshare.7423724.v1.

The following data sets were generated

Article and author information

Author details

  1. Diana E Mitchell

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0733-484X
  2. Annie Kwan

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Jerome Carriot

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Maurice J Chacron

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3032-452X
  5. Kathleen E Cullen

    Department of Physiology, McGill University, Montreal, Canada
    For correspondence
    kathleen.cullen@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9348-0933

Funding

Canadian Institutes of Health Research

  • Maurice J Chacron
  • Kathleen E Cullen

Canada Research Chairs

  • Maurice J Chacron

National Institutes of Health

  • Kathleen E Cullen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Fred Rieke, University of Washington, United States

Ethics

Animal experimentation: All experimental protocols were approved by the McGill University Animal Care Committee (#2001-4096) and were in compliance with the guidelines of the Canadian Council on Animal Care. Three male macaque monkeys (2 Macaca mulatta and 1 Macaca fascicularis) were prepared for chronic extracellular recording using aseptic surgical techniques as previously described (Massot et al., 2011). Animals (aged 7, 8, and 8 years old) were housed in pairs on a 12 hour light/dark cycle.

Version history

  1. Received: October 22, 2018
  2. Accepted: December 17, 2018
  3. Accepted Manuscript published: December 18, 2018 (version 1)
  4. Version of Record published: December 31, 2018 (version 2)

Copyright

© 2018, Mitchell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,450
    views
  • 221
    downloads
  • 29
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diana E Mitchell
  2. Annie Kwan
  3. Jerome Carriot
  4. Maurice J Chacron
  5. Kathleen E Cullen
(2018)
Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways
eLife 7:e43019.
https://doi.org/10.7554/eLife.43019

Share this article

https://doi.org/10.7554/eLife.43019

Further reading

    1. Neuroscience
    Ece Kaya, Sonja A Kotz, Molly J Henry
    Research Article

    Dynamic attending theory proposes that the ability to track temporal cues in the auditory environment is governed by entrainment, the synchronization between internal oscillations and regularities in external auditory signals. Here, we focused on two key properties of internal oscillators: their preferred rate, the default rate in the absence of any input; and their flexibility, how they adapt to changes in rhythmic context. We developed methods to estimate oscillator properties (Experiment 1) and compared the estimates across tasks and individuals (Experiment 2). Preferred rates, estimated as the stimulus rates with peak performance, showed a harmonic relationship across measurements and were correlated with individuals’ spontaneous motor tempo. Estimates from motor tasks were slower than those from the perceptual task, and the degree of slowing was consistent for each individual. Task performance decreased with trial-to-trial changes in stimulus rate, and responses on individual trials were biased toward the preceding trial’s stimulus properties. Flexibility, quantified as an individual’s ability to adapt to faster-than-previous rates, decreased with age. These findings show domain-specific rate preferences for the assumed oscillatory system underlying rhythm perception and production, and that this system loses its ability to flexibly adapt to changes in the external rhythmic context during aging.

    1. Neuroscience
    Guozheng Feng, Yiwen Wang ... Ni Shu
    Research Article

    Brain structural circuitry shapes a richly patterned functional synchronization, supporting for complex cognitive and behavioural abilities. However, how coupling of structural connectome (SC) and functional connectome (FC) develops and its relationships with cognitive functions and transcriptomic architecture remain unclear. We used multimodal magnetic resonance imaging data from 439 participants aged 5.7–21.9 years to predict functional connectivity by incorporating intracortical and extracortical structural connectivity, characterizing SC–FC coupling. Our findings revealed that SC–FC coupling was strongest in the visual and somatomotor networks, consistent with evolutionary expansion, myelin content, and functional principal gradient. As development progressed, SC–FC coupling exhibited heterogeneous alterations dominated by an increase in cortical regions, broadly distributed across the somatomotor, frontoparietal, dorsal attention, and default mode networks. Moreover, we discovered that SC–FC coupling significantly predicted individual variability in general intelligence, mainly influencing frontoparietal and default mode networks. Finally, our results demonstrated that the heterogeneous development of SC–FC coupling is positively associated with genes in oligodendrocyte-related pathways and negatively associated with astrocyte-related genes. This study offers insight into the maturational principles of SC–FC coupling in typical development.