Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways

Abstract

It is commonly assumed that the brain's neural coding strategies are adapted to the statistics of natural stimuli. Specifically, to maximize information transmission, a sensory neuron's tuning function should effectively oppose the decaying stimulus spectral power, such that the neural response is temporally decorrelated (i.e., 'whitened'). However, theory predicts that the structure of neuronal variability also plays an essential role in determining how coding is optimized. Here, we provide experimental evidence supporting this view by recording from neurons in early vestibular pathways during naturalistic self-motion. We found that central vestibular neurons displayed temporally whitened responses that could not be explained by their tuning alone. Rather, computational modeling and analysis revealed that neuronal variability and tuning were matched to effectively complement natural stimulus statistics, thereby achieving temporal decorrelation and optimizing information transmission. Taken together, our findings reveal a novel strategy by which neural variability contributes to optimized processing of naturalistic stimuli.

Data availability

All data have been deposited on Figshare under the URL https://doi.org/10.6084/m9.figshare.7423724.v1.

The following data sets were generated

Article and author information

Author details

  1. Diana E Mitchell

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0733-484X
  2. Annie Kwan

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Jerome Carriot

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
  4. Maurice J Chacron

    Department of Physiology, McGill University, Montreal, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3032-452X
  5. Kathleen E Cullen

    Department of Physiology, McGill University, Montreal, Canada
    For correspondence
    kathleen.cullen@jhu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9348-0933

Funding

Canadian Institutes of Health Research

  • Maurice J Chacron
  • Kathleen E Cullen

Canada Research Chairs

  • Maurice J Chacron

National Institutes of Health

  • Kathleen E Cullen

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experimental protocols were approved by the McGill University Animal Care Committee (#2001-4096) and were in compliance with the guidelines of the Canadian Council on Animal Care. Three male macaque monkeys (2 Macaca mulatta and 1 Macaca fascicularis) were prepared for chronic extracellular recording using aseptic surgical techniques as previously described (Massot et al., 2011). Animals (aged 7, 8, and 8 years old) were housed in pairs on a 12 hour light/dark cycle.

Reviewing Editor

  1. Fred Rieke, University of Washington, United States

Publication history

  1. Received: October 22, 2018
  2. Accepted: December 17, 2018
  3. Accepted Manuscript published: December 18, 2018 (version 1)
  4. Version of Record published: December 31, 2018 (version 2)

Copyright

© 2018, Mitchell et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,377
    Page views
  • 199
    Downloads
  • 23
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Diana E Mitchell
  2. Annie Kwan
  3. Jerome Carriot
  4. Maurice J Chacron
  5. Kathleen E Cullen
(2018)
Neuronal variability and tuning are balanced to optimize naturalistic self-motion coding in primate vestibular pathways
eLife 7:e43019.
https://doi.org/10.7554/eLife.43019

Further reading

    1. Neuroscience
    Sarah Mondoloni, Claire Nguyen ... Alexandre Mourot
    Research Article Updated

    Nicotine intake is likely to result from a balance between the rewarding and aversive properties of the drug, yet the individual differences in neural activity that control aversion to nicotine and their adaptation during the addiction process remain largely unknown. Using a two-bottle choice experiment, we observed considerable heterogeneity in nicotine-drinking profiles in isogenic adult male mice, with about half of the mice persisting in nicotine consumption even at high concentrations, whereas the other half stopped consuming. We found that nicotine intake was negatively correlated with nicotine-evoked currents in the interpeduncular nucleus (IPN), and that prolonged exposure to nicotine, by weakening this response, decreased aversion to the drug, and hence boosted consumption. Lastly, using knock-out mice and local gene re-expression, we identified β4-containing nicotinic acetylcholine receptors of IPN neurons as molecular and cellular correlates of nicotine aversion. Collectively, our results identify the IPN as a substrate for individual variabilities and adaptations in nicotine consumption.

    1. Neuroscience
    Movitz Lenninger, Mikael Skoglund ... Arvind Kumar
    Research Article Updated

    According to the efficient coding hypothesis, sensory neurons are adapted to provide maximal information about the environment, given some biophysical constraints. In early visual areas, stimulus-induced modulations of neural activity (or tunings) are predominantly single-peaked. However, periodic tuning, as exhibited by grid cells, has been linked to a significant increase in decoding performance. Does this imply that the tuning curves in early visual areas are sub-optimal? We argue that the time scale at which neurons encode information is imperative to understand the advantages of single-peaked and periodic tuning curves, respectively. Here, we show that the possibility of catastrophic (large) errors creates a trade-off between decoding time and decoding ability. We investigate how decoding time and stimulus dimensionality affect the optimal shape of tuning curves for removing catastrophic errors. In particular, we focus on the spatial periods of the tuning curves for a class of circular tuning curves. We show an overall trend for minimal decoding time to increase with increasing Fisher information, implying a trade-off between accuracy and speed. This trade-off is reinforced whenever the stimulus dimensionality is high, or there is ongoing activity. Thus, given constraints on processing speed, we present normative arguments for the existence of the single-peaked tuning organization observed in early visual areas.