1. Neuroscience
Download icon

PARIS, an optogenetic method for functionally mapping gap junctions

  1. Ling Wu
  2. Ao Dong
  3. Liting Dong
  4. Shi-Qiang Wang
  5. Yulong Li  Is a corresponding author
  1. Peking University School of Life Sciences, China
Tools and Resources
  • Cited 6
  • Views 5,590
  • Annotations
Cite this article as: eLife 2019;8:e43366 doi: 10.7554/eLife.43366
Voice your concerns about research culture and research communication: Have your say in our 7th annual survey.

Abstract

Cell-cell communication via gap junctions regulates a wide range of physiological processes by enabling the direct intercellular electrical and chemical coupling. However, the in vivo distribution and function of gap junctions remain poorly understood, partly due to the lack of non-invasive tools with both cell-type specificity and high spatiotemporal resolution. Here we developed PARIS (pairing actuators and receivers to optically isolate gap junctions), a new fully genetically encoded tool for measuring the cell-specific gap junctional coupling (GJC). PARIS successfully enabled monitoring of GJC in several cultured cell lines under physiologically relevant conditions and in distinct genetically defined neurons in Drosophila brain, with ~10-sec temporal resolution and sub-cellular spatial resolution. These results demonstrate that PARIS is a robust, highly sensitive tool for mapping functional gap junctions and study their regulation in both health and disease.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files

Article and author information

Author details

  1. Ling Wu

    State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3921-5626
  2. Ao Dong

    State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2821-9528
  3. Liting Dong

    Peking-Tsinghua Center for Life Sciences, Peking University School of Life Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8396-374X
  4. Shi-Qiang Wang

    State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
    Competing interests
    The authors declare that no competing interests exist.
  5. Yulong Li

    State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing, China
    For correspondence
    yulongli@pku.edu.cn
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9166-9919

Funding

National Natural Science Foundation of China (Projects 31371442)

  • Yulong Li

National Natural Science Foundation of China (Projects 31671118)

  • Yulong Li

National Natural Science Foundation of China (Projects 31630035)

  • Shi-Qiang Wang

Ministry of Science and Technology of the People's Republic of China (Grant 2015CB856402)

  • Yulong Li

Ministry of Science and Technology of the People's Republic of China (Grant 2016YFA0500401)

  • Shi-Qiang Wang

Beijing Brain Initiation (Z181100001518004)

  • Yulong Li

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Piali Sengupta, Brandeis University, United States

Publication history

  1. Received: November 3, 2018
  2. Accepted: January 12, 2019
  3. Accepted Manuscript published: January 14, 2019 (version 1)
  4. Version of Record published: March 1, 2019 (version 2)
  5. Version of Record updated: March 5, 2019 (version 3)
  6. Version of Record updated: April 10, 2019 (version 4)

Copyright

© 2019, Wu et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,590
    Page views
  • 991
    Downloads
  • 6
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Neuroscience
    Giada Dirupo et al.
    Research Article Updated

    Healthcare providers often underestimate patients’ pain, sometimes even when aware of their reports. This could be the effect of experience reducing sensitivity to others pain, or distrust toward patients’ self-evaluations. Across multiple experiments (375 participants), we tested whether senior medical students differed from younger colleagues and lay controls in the way they assess people’s pain and take into consideration their feedback. We found that medical training affected the sensitivity to pain faces, an effect shown by the lower ratings and highlighted by a decrease in neural response of the insula and cingulate cortex. Instead, distrust toward the expressions’ authenticity affected the processing of feedbacks, by decreasing activity in the ventral striatum whenever patients’ self-reports matched participants’ evaluations, and by promoting strong reliance on the opinion of other doctors. Overall, our study underscores the multiple processes which might influence the evaluation of others’ pain at the early stages of medical career.

    1. Neuroscience
    Eun Ju Shin et al.
    Research Article Updated

    Studies in rats, monkeys, and humans have found action-value signals in multiple regions of the brain. These findings suggest that action-value signals encoded in these brain structures bias choices toward higher expected rewards. However, previous estimates of action-value signals might have been inflated by serial correlations in neural activity and also by activity related to other decision variables. Here, we applied several statistical tests based on permutation and surrogate data to analyze neural activity recorded from the striatum, frontal cortex, and hippocampus. The results show that previously identified action-value signals in these brain areas cannot be entirely accounted for by concurrent serial correlations in neural activity and action value. We also found that neural activity related to action value is intermixed with signals related to other decision variables. Our findings provide strong evidence for broadly distributed neural signals related to action value throughout the brain.