1. Neuroscience
Download icon

Unimodal statistical learning produces multimodal object-like representations

  1. Gábor Lengyel  Is a corresponding author
  2. Goda Žalalytė
  3. Alexandros Pantelides
  4. James Neilson Ingram
  5. József Fiser  Is a corresponding author
  6. Máté Lengyel  Is a corresponding author
  7. Daniel M Wolpert  Is a corresponding author
  1. Central European University, Hungary
  2. University of Cambridge, United Kingdom
Research Article
  • Cited 0
  • Views 1,493
  • Annotations
Cite this article as: eLife 2019;8:e43942 doi: 10.7554/eLife.43942

Abstract

The concept of objects is fundamental to cognition and is defined by a consistent set of sensory properties and physical affordances. Although it is unknown how the abstract concept of an object emerges, most accounts assume that visual or haptic boundaries are crucial in this process. Here, we tested an alternative hypothesis that boundaries are not essential but simply reflect a more fundamental principle: consistent visual or haptic statistical properties. Using a novel visuo-haptic statistical learning paradigm, we familiarised participants with objects defined solely by across-scene statistics provided either visually or through physical interactions. We then tested them on both a visual familiarity and a haptic pulling task, thus measuring both within-modality learning and across-modality generalisation. Participants showed strong within-modality learning and 'zero-shot' across-modality generalisation which were highly correlated. Our results demonstrate that humans can segment scenes into objects, without any explicit boundary cues, using purely statistical information.

Article and author information

Author details

  1. Gábor Lengyel

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    lengyel.gaabor@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1535-3250
  2. Goda Žalalytė

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0012-9950
  3. Alexandros Pantelides

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-6061
  4. James Neilson Ingram

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. József Fiser

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    fiserj@ceu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Máté Lengyel

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    m.lengyel@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel M Wolpert

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    wolpert@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2011-2790

Funding

ERC Consolidator Grant (ERC-2016-COG/726090)

  • Máté Lengyel

Royal Society Noreen Murray Professorship in Neurobiolog (RP120142)

  • Daniel M Wolpert

EU-FP7 Marie Curie CIG (CIG 618918)

  • József Fiser

Wellcome Trust: New Investigator Award (095621/Z/11/Z)

  • Máté Lengyel

National Institutes of Health (NIH R21 HD088731)

  • József Fiser

Wellcome Trust: Senior Investigator Award (097803/Z/11/Z)

  • Daniel M Wolpert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave informed consent. All experimental protocols were approved by the University of Cambridge Psychology Ethics Committee.

Reviewing Editor

  1. Jörn Diedrichsen, University of Western Ontario, Canada

Publication history

  1. Received: November 27, 2018
  2. Accepted: April 30, 2019
  3. Accepted Manuscript published: May 1, 2019 (version 1)
  4. Version of Record published: May 21, 2019 (version 2)

Copyright

© 2019, Lengyel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,493
    Page views
  • 256
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)