Unimodal statistical learning produces multimodal object-like representations

  1. Gábor Lengyel  Is a corresponding author
  2. Goda Žalalytė
  3. Alexandros Pantelides
  4. James Neilson Ingram
  5. József Fiser  Is a corresponding author
  6. Máté Lengyel  Is a corresponding author
  7. Daniel M Wolpert  Is a corresponding author
  1. Central European University, Hungary
  2. University of Cambridge, United Kingdom

Abstract

The concept of objects is fundamental to cognition and is defined by a consistent set of sensory properties and physical affordances. Although it is unknown how the abstract concept of an object emerges, most accounts assume that visual or haptic boundaries are crucial in this process. Here, we tested an alternative hypothesis that boundaries are not essential but simply reflect a more fundamental principle: consistent visual or haptic statistical properties. Using a novel visuo-haptic statistical learning paradigm, we familiarised participants with objects defined solely by across-scene statistics provided either visually or through physical interactions. We then tested them on both a visual familiarity and a haptic pulling task, thus measuring both within-modality learning and across-modality generalisation. Participants showed strong within-modality learning and 'zero-shot' across-modality generalisation which were highly correlated. Our results demonstrate that humans can segment scenes into objects, without any explicit boundary cues, using purely statistical information.

Data availability

The scripts for all of the analysis reported in the manuscript can be found here https://github.com/GaborLengyel/Visual-Haptic-Statistical-Learning. There is a README file that explains both where the data can be found (Open Science Framework https://osf.io/456qb/) and how to run the analysis.

Article and author information

Author details

  1. Gábor Lengyel

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    lengyel.gaabor@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1535-3250
  2. Goda Žalalytė

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0012-9950
  3. Alexandros Pantelides

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-6061
  4. James Neilson Ingram

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. József Fiser

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    fiserj@ceu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Máté Lengyel

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    m.lengyel@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel M Wolpert

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    wolpert@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2011-2790

Funding

ERC Consolidator Grant (ERC-2016-COG/726090)

  • Máté Lengyel

Royal Society Noreen Murray Professorship in Neurobiolog (RP120142)

  • Daniel M Wolpert

EU-FP7 Marie Curie CIG (CIG 618918)

  • József Fiser

Wellcome Trust: New Investigator Award (095621/Z/11/Z)

  • Máté Lengyel

National Institutes of Health (NIH R21 HD088731)

  • József Fiser

Wellcome Trust: Senior Investigator Award (097803/Z/11/Z)

  • Daniel M Wolpert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave informed consent. All experimental protocols were approved by the University of Cambridge Psychology Ethics Committee.

Copyright

© 2019, Lengyel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,570
    views
  • 415
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gábor Lengyel
  2. Goda Žalalytė
  3. Alexandros Pantelides
  4. James Neilson Ingram
  5. József Fiser
  6. Máté Lengyel
  7. Daniel M Wolpert
(2019)
Unimodal statistical learning produces multimodal object-like representations
eLife 8:e43942.
https://doi.org/10.7554/eLife.43942

Share this article

https://doi.org/10.7554/eLife.43942

Further reading

    1. Neuroscience
    Vincent Huson, Wade G Regehr
    Research Article

    Unipolar brush cells (UBCs) are excitatory interneurons in the cerebellar cortex that receive mossy fiber (MF) inputs and excite granule cells. The UBC population responds to brief burst activation of MFs with a continuum of temporal transformations, but it is not known how UBCs transform the diverse range of MF input patterns that occur in vivo. Here, we use cell-attached recordings from UBCs in acute cerebellar slices to examine responses to MF firing patterns that are based on in vivo recordings. We find that MFs evoke a continuum of responses in the UBC population, mediated by three different types of glutamate receptors that each convey a specialized component. AMPARs transmit timing information for single stimuli at up to 5 spikes/s, and for very brief bursts. A combination of mGluR2/3s (inhibitory) and mGluR1s (excitatory) mediates a continuum of delayed, and broadened responses to longer bursts, and to sustained high frequency activation. Variability in the mGluR2/3 component controls the time course of the onset of firing, and variability in the mGluR1 component controls the duration of prolonged firing. We conclude that the combination of glutamate receptor types allows each UBC to simultaneously convey different aspects of MF firing. These findings establish that UBCs are highly flexible circuit elements that provide diverse temporal transformations that are well suited to contribute to specialized processing in different regions of the cerebellar cortex.

    1. Neuroscience
    Choongheon Lee, Mohammad Shokrian ... Jong-Hoon Nam
    Research Article

    We hypothesized that active outer hair cells drive cochlear fluid circulation. The hypothesis was tested by delivering the neurotoxin, kainic acid, to the intact round window of young gerbil cochleae while monitoring auditory responses in the cochlear nucleus. Sounds presented at a modest level significantly expedited kainic acid delivery. When outer-hair-cell motility was suppressed by salicylate, the facilitation effect was compromised. A low-frequency tone was more effective than broadband noise, especially for drug delivery to apical locations. Computational model simulations provided the physical basis for our observation, which incorporated solute diffusion, fluid advection, fluid–structure interaction, and outer-hair-cell motility. Active outer hair cells deformed the organ of Corti like a peristaltic tube to generate apically streaming flows along the tunnel of Corti and basally streaming flows along the scala tympani. Our measurements and simulations coherently suggest that active outer hair cells in the tail region of cochlear traveling waves drive cochlear fluid circulation.