Unimodal statistical learning produces multimodal object-like representations

  1. Gábor Lengyel  Is a corresponding author
  2. Goda Žalalytė
  3. Alexandros Pantelides
  4. James Neilson Ingram
  5. József Fiser  Is a corresponding author
  6. Máté Lengyel  Is a corresponding author
  7. Daniel M Wolpert  Is a corresponding author
  1. Central European University, Hungary
  2. University of Cambridge, United Kingdom

Abstract

The concept of objects is fundamental to cognition and is defined by a consistent set of sensory properties and physical affordances. Although it is unknown how the abstract concept of an object emerges, most accounts assume that visual or haptic boundaries are crucial in this process. Here, we tested an alternative hypothesis that boundaries are not essential but simply reflect a more fundamental principle: consistent visual or haptic statistical properties. Using a novel visuo-haptic statistical learning paradigm, we familiarised participants with objects defined solely by across-scene statistics provided either visually or through physical interactions. We then tested them on both a visual familiarity and a haptic pulling task, thus measuring both within-modality learning and across-modality generalisation. Participants showed strong within-modality learning and 'zero-shot' across-modality generalisation which were highly correlated. Our results demonstrate that humans can segment scenes into objects, without any explicit boundary cues, using purely statistical information.

Data availability

The scripts for all of the analysis reported in the manuscript can be found here https://github.com/GaborLengyel/Visual-Haptic-Statistical-Learning. There is a README file that explains both where the data can be found (Open Science Framework https://osf.io/456qb/) and how to run the analysis.

Article and author information

Author details

  1. Gábor Lengyel

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    lengyel.gaabor@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1535-3250
  2. Goda Žalalytė

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0012-9950
  3. Alexandros Pantelides

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6234-6061
  4. James Neilson Ingram

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. József Fiser

    Department of Cognitive Science, Central European University, Budapest, Hungary
    For correspondence
    fiserj@ceu.edu
    Competing interests
    The authors declare that no competing interests exist.
  6. Máté Lengyel

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    m.lengyel@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
  7. Daniel M Wolpert

    Computational and Biological Learning Lab, Department of Engineering, University of Cambridge, Cambridge, United Kingdom
    For correspondence
    wolpert@eng.cam.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2011-2790

Funding

ERC Consolidator Grant (ERC-2016-COG/726090)

  • Máté Lengyel

Royal Society Noreen Murray Professorship in Neurobiolog (RP120142)

  • Daniel M Wolpert

EU-FP7 Marie Curie CIG (CIG 618918)

  • József Fiser

Wellcome Trust: New Investigator Award (095621/Z/11/Z)

  • Máté Lengyel

National Institutes of Health (NIH R21 HD088731)

  • József Fiser

Wellcome Trust: Senior Investigator Award (097803/Z/11/Z)

  • Daniel M Wolpert

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All participants gave informed consent. All experimental protocols were approved by the University of Cambridge Psychology Ethics Committee.

Copyright

© 2019, Lengyel et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,579
    views
  • 415
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Gábor Lengyel
  2. Goda Žalalytė
  3. Alexandros Pantelides
  4. James Neilson Ingram
  5. József Fiser
  6. Máté Lengyel
  7. Daniel M Wolpert
(2019)
Unimodal statistical learning produces multimodal object-like representations
eLife 8:e43942.
https://doi.org/10.7554/eLife.43942

Share this article

https://doi.org/10.7554/eLife.43942

Further reading

    1. Neuroscience
    Mihály Vöröslakos, Yunchang Zhang ... György Buzsáki
    Tools and Resources

    Brain states fluctuate between exploratory and consummatory phases of behavior. These state changes affect both internal computation and the organism’s responses to sensory inputs. Understanding neuronal mechanisms supporting exploratory and consummatory states and their switching requires experimental control of behavioral shifts and collecting sufficient amounts of brain data. To achieve this goal, we developed the ThermoMaze, which exploits the animal’s natural warmth-seeking homeostatic behavior. By decreasing the floor temperature and selectively heating unmarked areas, we observed that mice avoided the aversive state by exploring the maze and finding the warm spot. In its design, the ThermoMaze is analogous to the widely used water maze but without the inconvenience of a wet environment and, therefore, allows the collection of physiological data in many trials. We combined the ThermoMaze with electrophysiology recording, and report that spiking activity of hippocampal CA1 neurons during sharp-wave ripple events encode the position of mice. Thus, place-specific firing is not confined to locomotion and associated theta oscillations but persist during waking immobility and sleep at the same location. The ThermoMaze will allow for detailed studies of brain correlates of immobility, preparatory–consummatory transitions, and open new options for studying behavior-mediated temperature homeostasis.

    1. Neuroscience
    Sergio Casas-Tinto, Nuria Garcia-Guillen, María Losada-Perez
    Short Report

    As the global population ages, the prevalence of neurodegenerative disorders is fast increasing. This neurodegeneration as well as other central nervous system (CNS) injuries cause permanent disabilities. Thus, generation of new neurons is the rosetta stone in contemporary neuroscience. Glial cells support CNS homeostasis through evolutionary conserved mechanisms. Upon damage, glial cells activate an immune and inflammatory response to clear the injury site from debris and proliferate to restore cell number. This glial regenerative response (GRR) is mediated by the neuropil-associated glia (NG) in Drosophila, equivalent to vertebrate astrocytes, oligodendrocytes (OL), and oligodendrocyte progenitor cells (OPCs). Here, we examine the contribution of NG lineages and the GRR in response to injury. The results indicate that NG exchanges identities between ensheathing glia (EG) and astrocyte-like glia (ALG). Additionally, we found that NG cells undergo transdifferentiation to yield neurons. Moreover, this transdifferentiation increases in injury conditions. Thus, these data demonstrate that glial cells are able to generate new neurons through direct transdifferentiation. The present work makes a fundamental contribution to the CNS regeneration field and describes a new physiological mechanism to generate new neurons.