The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti

  1. Benjamin J Matthews
  2. Meg A Younger
  3. Leslie B Vosshall  Is a corresponding author
  1. The Rockefeller University, United States

Abstract

Female Aedes aegypti mosquitoes are deadly vectors of arboviral pathogens and breed in containers of freshwater associated with human habitation. Because high salinity is lethal to offspring, correctly evaluating water purity is a crucial parenting decision. We found that the DEG/ENaC channel ppk301 and sensory neurons expressing ppk301 control egg-laying initiation and choice in Ae. aegypti. Using calcium imaging, we found that ppk301-expressing cells show ppk301-dependent responses to water but, unexpectedly, also respond to salt in a ppk301-independent fashion. This suggests that ppk301 is instructive for egg-laying at low salt concentrations, but that a ppk301-independent pathway is responsible for inhibiting egg-laying at high salt concentrations. Water is a key resource for insect survival and understanding how mosquitoes interact with water to control different behaviors is an opportunity to study the evolution of chemosensory systems.

Data availability

Source data for all plots in Figures 1-3 and Figure 5-7 are provided in Supplementary File 1.

The following previously published data sets were used

Article and author information

Author details

  1. Benjamin J Matthews

    Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8697-699X
  2. Meg A Younger

    Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4967-7939
  3. Leslie B Vosshall

    Laboratory of Neurogenetics and Behavior, The Rockefeller University, New York, United States
    For correspondence
    leslie@rockefeller.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6060-8099

Funding

Howard Hughes Medical Institute

  • Benjamin J Matthews
  • Leslie B Vosshall

Jane Coffin Childs Memorial Fund for Medical Research

  • Benjamin J Matthews
  • Meg A Younger

Grass Foundation

  • Meg A Younger

Leon Levy Foundation

  • Meg A Younger

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kristin Scott, University of California, Berkeley, United States

Ethics

Animal experimentation: For routine strain maintenance, animals were blood-fed on live mice or human subjects. Adult females of all genotypes were blood-fed on a single human subject during mutant generation, for behavioral assays, and calcium imaging. Blood-feeding procedures with live hosts were approved and monitored by The Rockefeller University Institutional Animal Care and Use Committee (IACUC protocol 15772) and Institutional Review Board, (IRB protocol LV-0652). Human subjects gave their written informed consent to participate.

Human subjects: For routine strain maintenance, animals were blood-fed on live mice or human subjects. Adult females of all genotypes were blood-fed on a single human subject during mutant generation, for behavioral assays, and calcium imaging. Blood-feeding procedures with live hosts were approved and monitored by The Rockefeller University Institutional Animal Care and Use Committee (IACUC protocol 15772) and Institutional Review Board, (IRB protocol LV-0652). Human subjects gave their written informed consent to participate.

Version history

  1. Received: November 28, 2018
  2. Accepted: May 20, 2019
  3. Accepted Manuscript published: May 21, 2019 (version 1)
  4. Version of Record published: June 27, 2019 (version 2)

Copyright

© 2019, Matthews et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,498
    views
  • 822
    downloads
  • 70
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Benjamin J Matthews
  2. Meg A Younger
  3. Leslie B Vosshall
(2019)
The ion channel ppk301 controls freshwater egg-laying in the mosquito Aedes aegypti
eLife 8:e43963.
https://doi.org/10.7554/eLife.43963

Share this article

https://doi.org/10.7554/eLife.43963

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Mathew Thayer, Michael B Heskett ... Phillip A Yates
    Research Article

    ASARs are a family of very-long noncoding RNAs that control replication timing on individual human autosomes, and are essential for chromosome stability. The eight known ASAR lncRNAs remain closely associated with their parent chromosomes. Analysis of RNA-protein interaction data (from ENCODE) revealed numerous RBPs with significant interactions with multiple ASAR lncRNAs, with several hnRNPs as abundant interactors. An ~7 kb domain within the ASAR6-141 lncRNA shows a striking density of RBP interaction sites. Genetic deletion and ectopic integration assays indicate that this ~7 kb RNA binding protein domain contains functional sequences for controlling replication timing of entire chromosomes in cis. shRNA-mediated depletion of 10 different RNA binding proteins, including HNRNPA1, HNRNPC, HNRNPL, HNRNPM, HNRNPU, or HNRNPUL1, results in dissociation of ASAR lncRNAs from their chromosome territories, and disrupts the synchronous replication that occurs on all autosome pairs, recapitulating the effect of individual ASAR knockouts on a genome-wide scale. Our results further demonstrate the role that ASARs play during the temporal order of genome-wide replication, and we propose that ASARs function as essential RNA scaffolds for the assembly of hnRNP complexes that help maintain the structural integrity of each mammalian chromosome.

    1. Genetics and Genomics
    Doo Eun Choi, Jun Wan Shin ... Jong-Min Lee
    Research Article

    An expanded CAG repeat in the huntingtin gene (HTT) causes Huntington’s disease (HD). Since the length of uninterrupted CAG repeat, not polyglutamine, determines the age-at-onset in HD, base editing strategies to convert CAG to CAA are anticipated to delay onset by shortening the uninterrupted CAG repeat. Here, we developed base editing strategies to convert CAG in the repeat to CAA and determined their molecular outcomes and effects on relevant disease phenotypes. Base editing strategies employing combinations of cytosine base editors and guide RNAs (gRNAs) efficiently converted CAG to CAA at various sites in the CAG repeat without generating significant indels, off-target edits, or transcriptome alterations, demonstrating their feasibility and specificity. Candidate BE strategies converted CAG to CAA on both expanded and non-expanded CAG repeats without altering HTT mRNA and protein levels. In addition, somatic CAG repeat expansion, which is the major disease driver in HD, was significantly decreased in the liver by a candidate BE strategy treatment in HD knock-in mice carrying canonical CAG repeats. Notably, CAG repeat expansion was abolished entirely in HD knock-in mice carrying CAA-interrupted repeats, supporting the therapeutic potential of CAG-to-CAA conversion strategies in HD and potentially other repeat expansion disorders.