Generalization of learned responses in the mormyrid electrosensory lobe

  1. Conor Dempsey
  2. Larry F Abbott
  3. Nathaniel Sawtell  Is a corresponding author
  1. Columbia University, United States

Abstract

Appropriate generalization of learned responses to new situations is vital for adaptive behavior. We provide a circuit-level account of generalization in the electrosensory lobe (ELL) of weakly electric mormyrid fish. Much is already known in this system about a form of learning in which motor corollary discharge signals cancel responses to the uninformative input evoked by the fish's own electric pulses. However, for this cancellation to be useful under natural circumstances, it must generalize accurately across behavioral regimes, specifically different electric pulse rates. We show that such generalization indeed occurs in ELL neurons, and develop a circuit-level model explaining how this may be achieved. The mechanism involves regularized synaptic plasticity and an approximate matching of the temporal dynamics of motor corollary discharge and electrosensory inputs. Recordings of motor corollary discharge signals in mossy fibers and granule cells provide direct evidence for such matching.

Data availability

Data and model code are available via Zenodo (doi: 10.5281/zenodo.2590782).

The following data sets were generated

Article and author information

Author details

  1. Conor Dempsey

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Larry F Abbott

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nathaniel Sawtell

    Department of Neuroscience, Columbia University, New York, United States
    For correspondence
    ns2635@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1859-8026

Funding

National Science Foundation (1025849)

  • Larry F Abbott
  • Nathaniel Sawtell

National Institute of Neurological Disorders and Stroke (NS075023)

  • Nathaniel Sawtell

Irma T. Hirschl Trust

  • Nathaniel Sawtell

Simons Foundation

  • Larry F Abbott

Gatsby Charitable Foundation

  • Larry F Abbott

National Science Foundation (1707398)

  • Larry F Abbott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Catherine Emily Carr, University of Maryland, United States

Ethics

Animal experimentation: All experiments performed in this study adhere to the American Physiological Society's Guiding Principles in the Care and Use of Animals and were approved by the Columbia University Institutional Animal Care and Use Committee, protocol AAAW4462.

Version history

  1. Received: November 29, 2018
  2. Accepted: February 21, 2019
  3. Accepted Manuscript published: March 12, 2019 (version 1)
  4. Accepted Manuscript updated: March 14, 2019 (version 2)
  5. Version of Record published: April 10, 2019 (version 3)

Copyright

© 2019, Dempsey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,207
    views
  • 201
    downloads
  • 8
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Conor Dempsey
  2. Larry F Abbott
  3. Nathaniel Sawtell
(2019)
Generalization of learned responses in the mormyrid electrosensory lobe
eLife 8:e44032.
https://doi.org/10.7554/eLife.44032

Share this article

https://doi.org/10.7554/eLife.44032

Further reading

    1. Neuroscience
    Katharina Eichler, Stefanie Hampel ... Andrew M Seeds
    Research Advance

    Mechanosensory neurons located across the body surface respond to tactile stimuli and elicit diverse behavioral responses, from relatively simple stimulus location-aimed movements to complex movement sequences. How mechanosensory neurons and their postsynaptic circuits influence such diverse behaviors remains unclear. We previously discovered that Drosophila perform a body location-prioritized grooming sequence when mechanosensory neurons at different locations on the head and body are simultaneously stimulated by dust (Hampel et al., 2017; Seeds et al., 2014). Here, we identify nearly all mechanosensory neurons on the Drosophila head that individually elicit aimed grooming of specific head locations, while collectively eliciting a whole head grooming sequence. Different tracing methods were used to reconstruct the projections of these neurons from different locations on the head to their distinct arborizations in the brain. This provides the first synaptic resolution somatotopic map of a head, and defines the parallel-projecting mechanosensory pathways that elicit head grooming.

    1. Neuroscience
    Songyao Zhang, Tuo Zhang ... Tianming Liu
    Research Article

    Cortical folding is an important feature of primate brains that plays a crucial role in various cognitive and behavioral processes. Extensive research has revealed both similarities and differences in folding morphology and brain function among primates including macaque and human. The folding morphology is the basis of brain function, making cross-species studies on folding morphology important for understanding brain function and species evolution. However, prior studies on cross-species folding morphology mainly focused on partial regions of the cortex instead of the entire brain. Previously, our research defined a whole-brain landmark based on folding morphology: the gyral peak. It was found to exist stably across individuals and ages in both human and macaque brains. Shared and unique gyral peaks in human and macaque are identified in this study, and their similarities and differences in spatial distribution, anatomical morphology, and functional connectivity were also dicussed.