Generalization of learned responses in the mormyrid electrosensory lobe

  1. Conor Dempsey
  2. L F Abbott
  3. Nathaniel B Sawtell  Is a corresponding author
  1. Columbia University, United States

Abstract

Appropriate generalization of learned responses to new situations is vital for adaptive behavior. We provide a circuit-level account of generalization in the electrosensory lobe (ELL) of weakly electric mormyrid fish. Much is already known in this system about a form of learning in which motor corollary discharge signals cancel responses to the uninformative input evoked by the fish's own electric pulses. However, for this cancellation to be useful under natural circumstances, it must generalize accurately across behavioral regimes, specifically different electric pulse rates. We show that such generalization indeed occurs in ELL neurons, and develop a circuit-level model explaining how this may be achieved. The mechanism involves regularized synaptic plasticity and an approximate matching of the temporal dynamics of motor corollary discharge and electrosensory inputs. Recordings of motor corollary discharge signals in mossy fibers and granule cells provide direct evidence for such matching.

Data availability

Data and model code are available via Zenodo (doi: 10.5281/zenodo.2590782).

The following data sets were generated

Article and author information

Author details

  1. Conor Dempsey

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. L F Abbott

    Department of Neuroscience, Columbia University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Nathaniel B Sawtell

    Department of Neuroscience, Columbia University, New York, United States
    For correspondence
    ns2635@columbia.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1859-8026

Funding

National Science Foundation (1025849)

  • L F Abbott
  • Nathaniel B Sawtell

National Institute of Neurological Disorders and Stroke (NS075023)

  • Nathaniel B Sawtell

Irma T. Hirschl Trust

  • Nathaniel B Sawtell

Simons Foundation

  • L F Abbott

Gatsby Charitable Foundation

  • L F Abbott

National Science Foundation (1707398)

  • L F Abbott

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All experiments performed in this study adhere to the American Physiological Society's Guiding Principles in the Care and Use of Animals and were approved by the Columbia University Institutional Animal Care and Use Committee, protocol AAAW4462.

Copyright

© 2019, Dempsey et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 11
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Conor Dempsey
  2. L F Abbott
  3. Nathaniel B Sawtell
(2019)
Generalization of learned responses in the mormyrid electrosensory lobe
eLife 8:e44032.
https://doi.org/10.7554/eLife.44032

Share this article

https://doi.org/10.7554/eLife.44032

Further reading

    1. Neuroscience
    Thomas MW Leir, Matthew PH Gardner
    Insight

    New results help address a longstanding debate regarding which learning strategies allow animals to anticipate negative events based on past associations between sensory stimuli.

    1. Neuroscience
    Olga Kepinska, Josue Dalboni da Rocha ... Narly Golestani
    Research Article

    This study examines whether auditory cortex anatomy reflects multilingual experience, specifically individuals’ phonological repertoire. Using data from over 200 participants exposed to 1–7 languages across 36 languages, we analyzed the role of language experience and typological distances between languages they spoke in shaping neural signatures of multilingualism. Our findings reveal a negative relationship between the thickness of the left and right second transverse temporal gyrus (TTG) and participants’ degree of multilingualism. Models incorporating phoneme-level information in the language experience index explained the most variance in TTG thickness, suggesting that a more extensive and more phonologically diverse language experience is associated with thinner cortices in the second TTG. This pattern, consistent across two datasets, supports the idea of experience-driven pruning and neural efficiency. Our findings indicate that experience with typologically distant languages appear to impact the brain differently than those with similar languages. Moreover, they suggest that early auditory regions seem to represent phoneme-level cross-linguistic information, contrary to the most established models of language processing in the brain, which suggest that phonological processing happens in more lateral posterior superior temporal gyrus (STG) and superior temporal sulcus (STS).