Novel RNA and DNA strand exchange activity of the PALB2 DNA Binding Domain and its critical role for DNA repair in cells

  1. Jaigeeth Deveryshetty
  2. Thibaut Peterlini
  3. Mikhail Ryzhikov
  4. Nadine Brahiti
  5. Graham Dellaire
  6. Jean-Yves Masson
  7. Sergey Korolev  Is a corresponding author
  1. Saint Louis University School of Medicine, United States
  2. CHU de Québec-Université Laval, Canada
  3. Dalhousie University, Canada

Abstract

BReast Cancer Associated proteins 1 and 2 (BRCA1, -2) and Partner and Localizer of BRCA2 (PALB2) protein are tumor suppressors linked to a spectrum of malignancies, including breast cancer and Fanconi anemia. PALB2 coordinates functions of BRCA1 and BRCA2 during homology-directed repair (HDR) and interacts with several chromatin proteins. In addition to protein scaffold function, PALB2 binds DNA. The functional role of this interaction is poorly understood. We identified a major DNA-binding site of PALB2, mutations in which reduce RAD51 foci formation and the overall HDR efficiency in cells by 50%. PALB2 N-terminal DNA-binding domain (N-DBD) stimulates the function of RAD51 recombinase. Surprisingly, it possesses the strand exchange activity without RAD51. Moreover, N-DBD stimulates the inverse strand exchange and can use DNA and RNA substrates. Our data reveal a versatile DNA interaction property of PALB2 and demonstrate a critical role of PALB2 DNA binding for chromosome repair in cells.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Jaigeeth Deveryshetty

    Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Thibaut Peterlini

    Genome Stability Laboratory, CHU de Québec-Université Laval, Québec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  3. Mikhail Ryzhikov

    Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Nadine Brahiti

    Genome Stability Laboratory, CHU de Québec-Université Laval, Québec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  5. Graham Dellaire

    Department of Pathology, Dalhousie University, Halifax, Canada
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3466-6316
  6. Jean-Yves Masson

    Genome Stability Laboratory, CHU de Québec-Université Laval, Québec City, Canada
    Competing interests
    The authors declare that no competing interests exist.
  7. Sergey Korolev

    Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St Louis, United States
    For correspondence
    korolevs@slu.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-9313-7126

Funding

Siteman Cancer Center

  • Sergey Korolev

Foundation for Barnes-Jewish Hospital

  • Sergey Korolev

Canadian Institutes of Health Research

  • Jean-Yves Masson

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Deveryshetty et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,585
    views
  • 422
    downloads
  • 19
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Jaigeeth Deveryshetty
  2. Thibaut Peterlini
  3. Mikhail Ryzhikov
  4. Nadine Brahiti
  5. Graham Dellaire
  6. Jean-Yves Masson
  7. Sergey Korolev
(2019)
Novel RNA and DNA strand exchange activity of the PALB2 DNA Binding Domain and its critical role for DNA repair in cells
eLife 8:e44063.
https://doi.org/10.7554/eLife.44063

Share this article

https://doi.org/10.7554/eLife.44063

Further reading

    1. Biochemistry and Chemical Biology
    2. Structural Biology and Molecular Biophysics
    Angel D'Oliviera, Xuhang Dai ... Jeffrey S Mugridge
    Research Article

    The SARS-CoV-2 main protease (Mpro or Nsp5) is critical for production of viral proteins during infection and, like many viral proteases, also targets host proteins to subvert their cellular functions. Here, we show that the human tRNA methyltransferase TRMT1 is recognized and cleaved by SARS-CoV-2 Mpro. TRMT1 installs the N2,N2-dimethylguanosine (m2,2G) modification on mammalian tRNAs, which promotes cellular protein synthesis and redox homeostasis. We find that Mpro can cleave endogenous TRMT1 in human cell lysate, resulting in removal of the TRMT1 zinc finger domain. Evolutionary analysis shows the TRMT1 cleavage site is highly conserved in mammals, except in Muroidea, where TRMT1 is likely resistant to cleavage. TRMT1 proteolysis results in reduced tRNA binding and elimination of tRNA methyltransferase activity. We also determined the structure of an Mpro-TRMT1 peptide complex that shows how TRMT1 engages the Mpro active site in an uncommon substrate binding conformation. Finally, enzymology and molecular dynamics simulations indicate that kinetic discrimination occurs during a later step of Mpro-mediated proteolysis following substrate binding. Together, these data provide new insights into substrate recognition by SARS-CoV-2 Mpro that could help guide future antiviral therapeutic development and show how proteolysis of TRMT1 during SARS-CoV-2 infection impairs both TRMT1 tRNA binding and tRNA modification activity to disrupt host translation and potentially impact COVID-19 pathogenesis or phenotypes.

    1. Biochemistry and Chemical Biology
    2. Microbiology and Infectious Disease
    Qian Wang, Jinxin Liu ... Qian Liu
    Research Article

    Paramyxovirus membrane fusion requires an attachment protein for receptor binding and a fusion protein for membrane fusion triggering. Nipah virus (NiV) attachment protein (G) binds to ephrinB2 or -B3 receptors, and fusion protein (F) mediates membrane fusion. NiV-F is a class I fusion protein and is activated by endosomal cleavage. The crystal structure of a soluble GCN4-decorated NiV-F shows a hexamer-of-trimer assembly. Here, we used single-molecule localization microscopy to quantify the NiV-F distribution and organization on cell and virus-like particle membranes at a nanometer precision. We found that NiV-F on biological membranes forms distinctive clusters that are independent of endosomal cleavage or expression levels. The sequestration of NiV-F into dense clusters favors membrane fusion triggering. The nano-distribution and organization of NiV-F are susceptible to mutations at the hexamer-of-trimer interface, and the putative oligomerization motif on the transmembrane domain. We also show that NiV-F nanoclusters are maintained by NiV-F–AP-2 interactions and the clathrin coat assembly. We propose that the organization of NiV-F into nanoclusters facilitates membrane fusion triggering by a mixed population of NiV-F molecules with varied degrees of cleavage and opportunities for interacting with the NiV-G/receptor complex. These observations provide insights into the in situ organization and activation mechanisms of the NiV fusion machinery.