Mechanotransduction: How muscle contraction strengthens tendons

The force generated by muscles leads to signaling that helps to shape nearby tendon precursor cells.
  1. Nicole O Glenn  Is a corresponding author
  2. Clarissa A Henry  Is a corresponding author
  1. St. Jude Children's Research Hospital, United States
  2. University of Maine, United States

The Chinese classic text Tao Te Ching states that “A journey of a thousand miles begins with a single step”. However, this famous proverb does not consider the impact of these steps on the unsung heroes of the musculoskeletal system – the tendons that connect muscle to bones and enable the skeleton to move. Tendon injuries (such as tendonitis, tendinopathy, and tendon rupture) are painful and difficult to heal. Typically caused by overuse, and especially frequent in weightlifters, such injuries occur because the tendon does not adapt as readily to changes in tension as muscle does.

Tendons are fibrous extracellular matrices (ECMs) composed of collagen, proteoglycans and other glycoproteins. In mature tendons, these ECM proteins are secreted by tendon cells. One reason that tendon injuries heal slowly is that tendons have relatively few of these cells (Lui, 2015). Currently, there are no efficient therapies for tendon injuries because it is not well understood how tendons respond to muscle contractions. Now, in eLife, Thomas Schilling of the University of California, Irvine and colleagues – Arul Subramanian (UC Irvine) as first author, Lauren Kanzaki (UC Irvine), and Jenna Galloway (Massachusetts General Hospital) – demonstrate that developing zebrafish embryos are excellent models for studying how tendons adapt to forces (Subramanian et al., 2018). This is because zebrafish embryos have perfected the art of maintaining functional tendons during dramatic growth of the musculoskeletal system.

Muscles and tendons work as an integrated unit to transmit force to the skeletal system and stabilize joints, and there is clear evidence that they depend on each other to develop correctly. In mice, muscles and tendons develop during the same time period and the formation of tendon progenitor cells depends on the presence of early muscle in mouse embryos (Brent et al., 2005). In zebrafish, disrupting muscle development has detrimental effects on the structure of tendons, and disrupting the tendon results in abnormally long muscle fibers (Hall et al., 2007; Goody et al., 2010).

Little is known about how mechanical force affects tendon development, even though force plays an important role in tendon repair. Subramanian et al. therefore established a way to image how tendon precursor cells (also known as tenocytes) develop. This technique uses transgenic zebrafish in which the regulatory elements for a tenocyte-specific gene called scxa control when the fluorescent protein mCherry is expressed (Schweitzer et al., 2001; Chen and Galloway, 2014).

Subramanian et al. observed that muscle contraction helps to shape the tenocytes (Figure 1). The tenocytes elongate and extend protrusions perpendicular to the muscle cells. Unexpectedly, these protrusions are microtubule-based rather than the actin-based protrusions more frequently observed in cells.

Muscle contraction is required for normal tendon development.

(A) During normal muscle development, contractions increase the amount of extracellular matrix proteins, including collagen (green) and Thrombospondin (red), deposited in the developing tendon. These muscle contractions are also required for normal BMP signaling that prompts tenocytes (tendon precursor cells, blue) to elongate and extend complex protrusions (inset panels). (B) In the absence of muscle contraction, extracellular matrix deposition is decreased and tenocytes are rounded with shorter and less complex protrusions.

Immobilized zebrafish embryos developed misaligned tenocytes with shorter and less complex protrusions. The concentration of the tendon ECM protein Thrombospondin, which plays a critical role in tendon development and muscle maintenance (Subramanian and Schilling, 2014), was also disrupted. However, using electrical stimulation to induce muscle contraction in the immobilized zebrafish restored normal tenocyte development and tendon ECM. These creative experiments clearly demonstrate that contractile muscle tissue is required for tendon development.

How do cells integrate mechanical force with biochemical signals? This is a fundamental question throughout cell biology, and Subramanian et al. now have a hypothesis for how this works in tenocytes. They found that contractile force produced by muscle promotes the activity of a signaling pathway called TGFbeta in the tenocytes. Furthermore, TGFbeta is required to form the tenocyte protrusions and to express tenocyte-specific genes, including the gene that produces Thrombospondin. This suggests that one role of the tenocyte protrusions is to secrete and organize the tendon ECM.

The results reported by Subramanian et al. represent a dramatic step forward in our understanding of how tendons respond to contractile force during development. It remains to be seen whether similar mechanisms underlie muscle–tendon dynamics during tendon repair. Could electrical stimulation help tendons to repair themselves? Another major cause of tendon injury is the tendon ECM becoming less elastic with age, leaving one to wonder whether increasing Thrombospondin levels or activating TGFbeta signaling could rescue elasticity. If so, it is worth noting that the UC Irvine team had previously shown that the defects seen in Thrombospondin-deficient zebrafish can be rescued by expressing the human form of the protein (Subramanian and Schilling, 2014). This result indicates that zebrafish and human Thrombospondin work interchangeably, which will allow researchers to use the zebrafish model to investigate the therapeutic potential of this protein.

References

    1. Schweitzer R
    2. Chyung JH
    3. Murtaugh LC
    4. Brent AE
    5. Rosen V
    6. Olson EN
    7. Lassar A
    8. Tabin CJ
    (2001)
    Analysis of the tendon cell fate using scleraxis, a specific marker for tendons and ligaments
    Development 128:3855–3866.

Article and author information

Author details

  1. Nicole O Glenn

    Nicole O Glenn is in the Department of Hematology, St. Jude Children’s Research Hospital, Memphis, United States

    For correspondence
    nikkiollilaglenn@gmail.com
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8890-5506
  2. Clarissa A Henry

    Clarissa Henry is in the School of Biology and Ecology and the Graduate School for Biomedical Sciences and Engineering, University of Maine, Orono, United States

    For correspondence
    Clarissa.Henry@umit.maine.edu
    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7204-9231

Publication history

  1. Version of Record published: January 24, 2019 (version 1)

Copyright

© 2019, Glenn and Henry

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,039
    Page views
  • 225
    Downloads
  • 1
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nicole O Glenn
  2. Clarissa A Henry
(2019)
Mechanotransduction: How muscle contraction strengthens tendons
eLife 8:e44149.
https://doi.org/10.7554/eLife.44149
  1. Further reading

Further reading

    1. Cell Biology
    2. Structural Biology and Molecular Biophysics
    Johannes Elferich, Giulia Schiroli ... Nikolaus Grigorieff
    Tools and Resources Updated

    A major goal of biological imaging is localization of biomolecules inside a cell. Fluorescence microscopy can localize biomolecules inside whole cells and tissues, but its ability to count biomolecules and accuracy of the spatial coordinates is limited by the wavelength of visible light. Cryo-electron microscopy (cryo-EM) provides highly accurate position and orientation information of biomolecules but is often confined to small fields of view inside a cell, limiting biological context. In this study, we use a new data-acquisition scheme called Defocus-Corrected Large-Area cryo-EM (DeCo-LACE) to collect high-resolution images of entire sections (100- to 250-nm-thick lamellae) of neutrophil-like mouse cells, representing 1–2% of the total cellular volume. We use 2D template matching (2DTM) to determine localization and orientation of the large ribosomal subunit in these sections. These data provide maps of ribosomes across entire sections of mammalian cells. This high-throughput cryo-EM data collection approach together with 2DTM will advance visual proteomics and provide biological insight that cannot be obtained by other methods.

    1. Cell Biology
    2. Genetics and Genomics
    Sumedha Dahal, Humaira Siddiqua ... Sathees C Raghavan
    Research Article Updated

    Having its genome makes the mitochondrion a unique and semiautonomous organelle within cells. Mammalian mitochondrial DNA (mtDNA) is a double-stranded closed circular molecule of about 16 kb coding for 37 genes. Mutations, including deletions in the mitochondrial genome, can culminate in different human diseases. Mapping the deletion junctions suggests that the breakpoints are generally seen at hotspots. ‘9 bp deletion’ (8271–8281), seen in the intergenic region of cytochrome c oxidase II/tRNALys, is the most common mitochondrial deletion. While it is associated with several diseases like myopathy, dystonia, and hepatocellular carcinoma, it has also been used as an evolutionary marker. However, the mechanism responsible for its fragility is unclear. In the current study, we show that Endonuclease G, a mitochondrial nuclease responsible for nonspecific cleavage of nuclear DNA during apoptosis, can induce breaks at sequences associated with ‘9 bp deletion’ when it is present on a plasmid or in the mitochondrial genome. Through a series of in vitro and intracellular studies, we show that Endonuclease G binds to G-quadruplex structures formed at the hotspot and induces DNA breaks. Therefore, we uncover a new role for Endonuclease G in generating mtDNA deletions, which depends on the formation of G4 DNA within the mitochondrial genome. In summary, we identify a novel property of Endonuclease G, besides its role in apoptosis and the recently described ‘elimination of paternal mitochondria during fertilisation.