The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells

Abstract

Overexpression of anti-apoptotic proteins MCL1 and Bcl-xL are frequently observed in many cancers. Inhibitors targeting MCL1 are in clinical development, however numerous cancer models are intrinsically resistant to this approach. To discover mechanisms underlying resistance to MCL1 inhibition, we performed multiple flow-cytometry based genome-wide CRISPR screens interrogating two drugs that directly (MCL1i) or indirectly (CDK9i) target MCL1. Remarkably, both screens identified three components (CUL5, RNF7 and UBE2F) of a cullin-RING ubiquitin ligase complex (CRL5) that resensitized cells to MCL1 inhibition. We find that levels of the BH3-only pro-apoptotic proteins Bim and Noxa are proteasomally regulated by the CRL5 complex. Accumulation of Noxa caused by depletion of CRL5 components was responsible for re-sensitization to CDK9 inhibitor, but not MCL1 inhibitor. Discovery of a novel role of CRL5 in apoptosis and resistance to multiple types of anti-cancer agents suggests the potential to improve combination treatments.

Data availability

Sequencing data is being deposited into SRA under accession code: SUB5033643

The following data sets were generated

Article and author information

Author details

  1. Shaheen Kabir

    Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  2. Justin Cidado

    IMED Oncology, AstraZeneca, Waltham, United States
    Competing interests
    Justin Cidado, employed by AstraZeneca, from whom funded research support was received..
  3. Courtney Andersen

    IMED Oncology, AstraZeneca, Waltham, United States
    Competing interests
    Courtney Andersen, employed by AstraZeneca, from whom funded research support was received..
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2064-2273
  4. Cortni Dick

    IMED Oncology, AstraZeneca, Waltham, United States
    Competing interests
    Cortni Dick, employed by AstraZeneca, from whom funded research support was received..
  5. Pei-Chun Lin

    Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Therese Mitros

    Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Hong Ma

    Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Seung Hyun Baik

    Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Matthew A Belmonte

    IMED Oncology, AstraZeneca, Waltham, United States
    Competing interests
    Matthew A Belmonte, employed by AstraZeneca, from whom funded research support was received..
  10. Lisa Drew

    IMED Oncology, AstraZeneca, Waltham, United States
    Competing interests
    Lisa Drew, employed by AstraZeneca, from whom funded research support was received..
  11. Jacob E Corn

    Innovative Genomics Institute, University of California, Berkeley, Berkeley, United States
    For correspondence
    jacob.corn@biol.ethz.ch
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7798-5309

Funding

AstraZeneca

  • Shaheen Kabir
  • Justin Cidado
  • Courtney Andersen
  • Cortni Dick
  • Pei-Chun Lin
  • Hong Ma
  • Matthew A Belmonte
  • Lisa Drew
  • Jacob E Corn

National Institutes of Health (DP2 HL141006)

  • Jacob E Corn

Li Ka Shing Foundation

  • Jacob E Corn

Heritage Medical Research Institute

  • Jacob E Corn

California Institute for Regenerative Medicine (DISC1-08776)

  • Shaheen Kabir
  • Seung Hyun Baik
  • Jacob E Corn

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Michael R Green, Howard Hughes Medical Institute, University of Massachusetts Medical School, United States

Version history

  1. Received: December 15, 2018
  2. Accepted: July 5, 2019
  3. Accepted Manuscript published: July 11, 2019 (version 1)
  4. Version of Record published: August 20, 2019 (version 2)
  5. Version of Record updated: October 7, 2019 (version 3)

Copyright

© 2019, Kabir et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,397
    views
  • 749
    downloads
  • 20
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Shaheen Kabir
  2. Justin Cidado
  3. Courtney Andersen
  4. Cortni Dick
  5. Pei-Chun Lin
  6. Therese Mitros
  7. Hong Ma
  8. Seung Hyun Baik
  9. Matthew A Belmonte
  10. Lisa Drew
  11. Jacob E Corn
(2019)
The CUL5 ubiquitin ligase complex mediates resistance to CDK9 and MCL1 inhibitors in lung cancer cells
eLife 8:e44288.
https://doi.org/10.7554/eLife.44288

Share this article

https://doi.org/10.7554/eLife.44288

Further reading

    1. Cancer Biology
    2. Cell Biology
    Alex Weiss, Cassandra D'Amata ... Madeline N Hayes
    Research Article

    High-throughput vertebrate animal model systems for the study of patient-specific biology and new therapeutic approaches for aggressive brain tumors are currently lacking, and new approaches are urgently needed. Therefore, to build a patient-relevant in vivo model of human glioblastoma, we expressed common oncogenic variants including activated human EGFRvIII and PI3KCAH1047R under the control of the radial glial-specific promoter her4.1 in syngeneic tp53 loss-of-function mutant zebrafish. Robust tumor formation was observed prior to 45 days of life, and tumors had a gene expression signature similar to human glioblastoma of the mesenchymal subtype, with a strong inflammatory component. Within early stage tumor lesions, and in an in vivo and endogenous tumor microenvironment, we visualized infiltration of phagocytic cells, as well as internalization of tumor cells by mpeg1.1:EGFP+ microglia/macrophages, suggesting negative regulatory pressure by pro-inflammatory cell types on tumor growth at early stages of glioblastoma initiation. Furthermore, CRISPR/Cas9-mediated gene targeting of master inflammatory transcription factors irf7 or irf8 led to increased tumor formation in the primary context, while suppression of phagocyte activity led to enhanced tumor cell engraftment following transplantation into otherwise immune-competent zebrafish hosts. Altogether, we developed a genetically relevant model of aggressive human glioblastoma and harnessed the unique advantages of zebrafish including live imaging, high-throughput genetic and chemical manipulations to highlight important tumor-suppressive roles for the innate immune system on glioblastoma initiation, with important future opportunities for therapeutic discovery and optimizations.

    1. Cancer Biology
    2. Cell Biology
    Ian Lorimer
    Insight

    Establishing a zebrafish model of a deadly type of brain tumor highlights the role of the immune system in the early stages of the disease.