PAX8 regulon in human ovarian cancer links lineage dependency with epigenetic vulnerability to HDAC inhibitors
Abstract
PAX8 is a prototype lineage-survival oncogene in epithelial ovarian cancer. However, neither its underlying pro-tumorigenic mechanisms nor potential therapeutic implications have been adequately elucidated. Here, we identified an ovarian lineage-specific PAX8 regulon using modified cancer outlier profile analysis, in which PAX8-FGF18 axis was responsible for promoting cell migration in an autocrine fashion. An image-based drug screen pinpointed that PAX8 expression was potently inhibited by small-molecules against histone deacetylases (HDACs). Mechanistically, HDAC blockade altered histone H3K27 acetylation occupancies and perturbed the super-enhancer topology associated with PAX8 gene locus, resulting in epigenetic downregulation of PAX8 transcripts and related targets. HDAC antagonists efficaciously suppressed ovarian tumor growth and spreading as single agents, and exerted synergistic effects in combination with standard chemotherapy. These findings provide mechanistic and therapeutic insights for PAX8-addicted ovarian cancer. More generally, our analytic and experimental approach represents an expandible paradigm for identifying and targeting lineage-survival oncogenes in diverse human malignancies.
Data availability
The sequencing data have been deposited in NCBI SRA database(http://www.ncbi.nlm.nih.gov/sra/) under the accession number SRP153266.
-
RNAseq of ovarian cancer cell lines: HDAC inhibitors,sgPAX8 treatmentNCBI Sequence Read Archive, SRP153266.
Article and author information
Author details
Funding
National Natural Science Foundation of China (81472537)
- Guanglei Zhuang
Shanghai Municipal Commission of Health and Family Planning (20174Y0043)
- Mei-Chun Cai
Program of Shanghai Hospital Development Center (16CR2001A)
- Wen Di
Shanghai Jiao Tong University School of Medicine (YG2016MS51)
- Xia Yin
The State Key Laboratory of Oncogenes and Related Genes (SB17-06)
- Mei-Chun Cai
Shanghai Sailing Program (18YF1413200)
- Pengfei Ma
National Key R&D Program of China (2016YFC1302900)
- Wen Di
Science and Technology Commission of Shanghai Municipality (18441904800)
- Wen Di
The Shanghai Institutions of Higher Learning (Eastern Scholar)
- Guanglei Zhuang
National Natural Science Foundation of China (81672714)
- Guanglei Zhuang
National Natural Science Foundation of China (81772770)
- Wen Di
National Natural Science Foundation of China (81802584)
- Meiying Zhang
National Natural Science Foundation of China (81802734)
- Pengfei Ma
National Natural Science Foundation of China (81802809)
- Mei-Chun Cai
Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161313)
- Guanglei Zhuang
Shanghai Rising-Star Program (16QA1403600)
- Guanglei Zhuang
Shanghai Municipal Commission of Health and Family Planning (2017ZZ02016,ZY(2018-2020)-FWTX-3006)
- Wen Di
Science and Technology Commission of Shanghai Municipality (16140904401)
- Xia Yin
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The institutional animal care and use committee of Ren Ji Hospital approved all animal protocols (permit-number: m20170205) and all animal experiments were in accordance with Ren Ji Hospital policies on the care, welfare, and treatment of laboratory animals.
Copyright
© 2019, Shi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 3,194
- views
-
- 540
- downloads
-
- 37
- citations
Views, downloads and citations are aggregated across all versions of this paper published by eLife.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Cancer Biology
- Genetics and Genomics
Solitary fibrous tumors have gene expression signatures similar to those of neuroendocrine tumors.
-
- Cancer Biology
Gastric cancer (GC) is a major cause of cancer-related mortality worldwide. Despite the widespread recognition of tumor immunotherapy in treating unresectable GC, challenges, including ineffective immunotherapy and drug resistance, persist. Therefore, understanding the regulatory mechanisms of PD-L1, particularly in the context of super-enhancers (SEs) and zinc finger protein 36 ring finger protein-like 1 (ZFP36L1) RNA-binding protein, is crucial. In this study, we performed H3K27ac Cleavage Under Targets and Tagmentation (CUT&Tag) sequencing, investigated the heterogeneity of SEs between two GC subtypes with differential growth patterns, and revealed the immune escape signatures driven by ZFP36L1-SE in infiltrative GC through SEs inhibitors treatment. The regulation of ZFP36L1 to PD-L1 was evaluated by quantitative PCR, western blot, flow cytometry, and immunohistochemistry. Furthermore, we explored its regulatory mechanisms using a combination of molecular biology techniques, including luciferase reporter assay, GST/RNA pull-down, chromatin immunoprecipitation (ChIP)/RIP experiments, and in vivo functional assays. We demonstrated that ZFP36L1, driven by an SE, enhances IFN-γ-induced PD-L1 expression, with SPI1 identified as the specific transcription factor binding to ZFP36L1-SE. Mechanistically, ZFP36L1 binds to the adenylate uridylate-rich element in the 3ʹ untranslated region (3ʹUTR) of HDAC3 mRNA, exacerbating its mRNA decay, and thereby facilitating PD-L1 abnormal transcriptional activation. Collectively, our findings provide mechanistic insights into the role of the SPI1-ZFP36L1-HDAC3-PD-L1 signaling axis in orchestrating immune escape mechanisms in GC, thereby offering valuable insights into the potential targets for immune checkpoint therapy in GC management.