PAX8 regulon in human ovarian cancer links lineage dependency with epigenetic vulnerability to HDAC inhibitors
Abstract
PAX8 is a prototype lineage-survival oncogene in epithelial ovarian cancer. However, neither its underlying pro-tumorigenic mechanisms nor potential therapeutic implications have been adequately elucidated. Here, we identified an ovarian lineage-specific PAX8 regulon using modified cancer outlier profile analysis, in which PAX8-FGF18 axis was responsible for promoting cell migration in an autocrine fashion. An image-based drug screen pinpointed that PAX8 expression was potently inhibited by small-molecules against histone deacetylases (HDACs). Mechanistically, HDAC blockade altered histone H3K27 acetylation occupancies and perturbed the super-enhancer topology associated with PAX8 gene locus, resulting in epigenetic downregulation of PAX8 transcripts and related targets. HDAC antagonists efficaciously suppressed ovarian tumor growth and spreading as single agents, and exerted synergistic effects in combination with standard chemotherapy. These findings provide mechanistic and therapeutic insights for PAX8-addicted ovarian cancer. More generally, our analytic and experimental approach represents an expandible paradigm for identifying and targeting lineage-survival oncogenes in diverse human malignancies.
Data availability
The sequencing data have been deposited in NCBI SRA database(http://www.ncbi.nlm.nih.gov/sra/) under the accession number SRP153266.
-
RNAseq of ovarian cancer cell lines: HDAC inhibitors,sgPAX8 treatmentNCBI Sequence Read Archive, SRP153266.
Article and author information
Author details
Funding
National Natural Science Foundation of China (81472537)
- Guanglei Zhuang
Shanghai Municipal Commission of Health and Family Planning (20174Y0043)
- Mei-Chun Cai
Program of Shanghai Hospital Development Center (16CR2001A)
- Wen Di
Shanghai Jiao Tong University School of Medicine (YG2016MS51)
- Xia Yin
The State Key Laboratory of Oncogenes and Related Genes (SB17-06)
- Mei-Chun Cai
Shanghai Sailing Program (18YF1413200)
- Pengfei Ma
National Key R&D Program of China (2016YFC1302900)
- Wen Di
Science and Technology Commission of Shanghai Municipality (18441904800)
- Wen Di
The Shanghai Institutions of Higher Learning (Eastern Scholar)
- Guanglei Zhuang
National Natural Science Foundation of China (81672714)
- Guanglei Zhuang
National Natural Science Foundation of China (81772770)
- Wen Di
National Natural Science Foundation of China (81802584)
- Meiying Zhang
National Natural Science Foundation of China (81802734)
- Pengfei Ma
National Natural Science Foundation of China (81802809)
- Mei-Chun Cai
Shanghai Municipal Education Commission-Gaofeng Clinical Medicine Grant Support (20161313)
- Guanglei Zhuang
Shanghai Rising-Star Program (16QA1403600)
- Guanglei Zhuang
Shanghai Municipal Commission of Health and Family Planning (2017ZZ02016,ZY(2018-2020)-FWTX-3006)
- Wen Di
Science and Technology Commission of Shanghai Municipality (16140904401)
- Xia Yin
The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.
Ethics
Animal experimentation: The institutional animal care and use committee of Ren Ji Hospital approved all animal protocols (permit-number: m20170205) and all animal experiments were in accordance with Ren Ji Hospital policies on the care, welfare, and treatment of laboratory animals.
Reviewing Editor
- Wilbert Zwart, Netherlands Cancer Institute, Netherlands
Publication history
- Received: December 11, 2018
- Accepted: May 2, 2019
- Accepted Manuscript published: May 3, 2019 (version 1)
- Version of Record published: May 23, 2019 (version 2)
Copyright
© 2019, Shi et al.
This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.
Metrics
-
- 2,655
- Page views
-
- 490
- Downloads
-
- 21
- Citations
Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.
Download links
Downloads (link to download the article as PDF)
Open citations (links to open the citations from this article in various online reference manager services)
Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)
Further reading
-
- Biochemistry and Chemical Biology
- Cancer Biology
Cancer secretome is a reservoir for aberrant glycosylation. How therapies alter this post- translational cancer hallmark and the consequences thereof remain elusive. Here we show that an elevated secretome fucosylation is a pan-cancer signature of both response and resistance to multiple targeted therapies. Large-scale pharmacogenomics revealed that fucosylation genes display widespread association with resistance to these therapies. In cancer cell cultures, xenograft mouse models, and patients, targeted kinase inhibitors distinctively induced core fucosylation of secreted proteins less than 60 kDa. Label-free proteomics of N-glycoproteomes identified fucosylation of the antioxidant PON1 as a critical component of the therapy-induced secretome (TIS). N-glycosylation of TIS and target core fucosylation of PON1 are mediated by the fucose salvage-FUT8-SLC35C1 axis with PON3 directly modulating GDP-Fuc transfer on PON1 scaffolds. Core fucosylation in the Golgi impacts PON1 stability and folding prior to secretion, promoting a more degradation-resistant PON1. Global and PON1-specific secretome de-N-glycosylation both limited the expansion of resistant clones in a tumor regression model. We defined the resistance-associated transcription factors (TFs) and genes modulated by the N-glycosylated TIS via a focused and transcriptome-wide analyses. These genes characterize the oxidative stress, inflammatory niche, and unfolded protein response as important factors for this modulation. Our findings demonstrate that core fucosylation is a common modification indirectly induced by targeted therapies that paradoxically promotes resistance.
-
- Cancer Biology
- Microbiology and Infectious Disease
A small percentage of bladder cancers in the general population have been found to harbor DNA viruses. In contrast, up to 25% of tumors of solid organ transplant recipients, who are at an increased risk of developing bladder cancer and have overall poorer outcome, harbor BK polyomavirus (BKPyV). To better understand the biology of the tumors and the mechanisms of carcinogenesis from potential oncoviruses, we performed whole genome and transcriptome sequencing on bladder cancer specimens from 43 transplant patients. Nearly half of tumors from this patient population contained viral sequences. The most common were from BKPyV (N=9, 21%), JC polyomavirus (N=7, 16%), carcinogenic human papillomaviruses (N=3, 7%), and torque teno viruses (N=5, 12%). Immunohistochemistry revealed variable Large T antigen expression in BKPyV-positive tumors ranging from 100% positive staining of tumor tissue to less than 1%. In most cases of BKPyV-positive tumors, the viral genome appeared to be clonally integrated into the host chromosome consistent with microhomology-mediated end joining and coincided with focal amplifications of the tumor genome similar to other virus-mediated cancers. Significant changes in host gene expression consistent with the functions of BKPyV Large T antigen were also observed in these tumors. Lastly, we identified four mutation signatures in our cases with those attributable to APOBEC3 and SBS5 being the most abundant. Mutation signatures associated with the antiviral drug, ganciclovir, and aristolochic acid, a nephrotoxic compound found in some herbal medicines, were also observed. The results suggest multiple pathways to carcinogenesis in solid organ transplant recipients with a large fraction being virus-associated.