ADAM17-dependent signaling is required for oncogenic Human Papilloma virus entry platform assembly

  1. Snježana Mikuličić
  2. Jérôme Finke
  3. Fatima Boukhallouk
  4. Elena Wüstenhagen
  5. Dominik Sons
  6. Yahya Homsi
  7. Karina Reiss
  8. Thorsten Lang
  9. Luise Florin  Is a corresponding author
  1. University Medical Center of the Johannes Gutenberg University Mainz, Germany
  2. University of Bonn, Germany
  3. University Hospital Schleswig-Holstein Campus, Germany

Abstract

Oncogenic Human papillomaviruses (HPV) are small DNA viruses that infect keratinocytes. After HPV binding to cell surface receptors a cascade of molecular interactions mediates the infectious cellular internalization of virus particles. Aside from the virus itself, important molecular players involved in virus entry include the tetraspanin CD151 and the epidermal growth factor receptor (EGFR). To date, it is unknown how these components are coordinated in space and time. Here, we studied plasma membrane dynamics of CD151 and EGFR and the HPV16 capsid during the early phase of infection. We find that the proteinase ADAM17 activates the extracellular signal regulated kinases (ERK1/2) pathway by the shedding of growth factors that trigger the formation of an endocytic entry platform. Infectious endocytic entry platforms carrying virus particles consist of two-fold larger CD151 domains containing the EGFR. Our finding clearly dissects initial virus binding from ADAM17-dependent assembly of a HPV/CD151/EGFR entry platform.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Snježana Mikuličić

    Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  2. Jérôme Finke

    Department of Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  3. Fatima Boukhallouk

    Department of Medical Microbiology and Hygiene, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
  4. Elena Wüstenhagen

    Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5420-6536
  5. Dominik Sons

    Department of Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  6. Yahya Homsi

    Department of Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
  7. Karina Reiss

    Department of Dermatology and Allergology, University Hospital Schleswig-Holstein Campus, Kiel, Germany
    Competing interests
    The authors declare that no competing interests exist.
  8. Thorsten Lang

    Department of Membrane Biochemistry, Life and Medical Sciences Institute, University of Bonn, Bonn, Germany
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9128-0137
  9. Luise Florin

    Institute for Virology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
    For correspondence
    lflorin@uni-mainz.de
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4310-7329

Funding

Deutsche Forschungsgemeinschaft (FL 696/3-1)

  • Thorsten Lang
  • Luise Florin

Deutscher Akademischer Austauschdienst

  • Snježana Mikuličić

Deutsche Forschungsgemeinschaft (LA 1272/8-1)

  • Thorsten Lang
  • Luise Florin

Deutsche Forschungsgemeinschaft (CRC877 (A4))

  • Karina Reiss

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Mikuličić et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,098
    views
  • 292
    downloads
  • 28
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Snježana Mikuličić
  2. Jérôme Finke
  3. Fatima Boukhallouk
  4. Elena Wüstenhagen
  5. Dominik Sons
  6. Yahya Homsi
  7. Karina Reiss
  8. Thorsten Lang
  9. Luise Florin
(2019)
ADAM17-dependent signaling is required for oncogenic Human Papilloma virus entry platform assembly
eLife 8:e44345.
https://doi.org/10.7554/eLife.44345

Share this article

https://doi.org/10.7554/eLife.44345

Further reading

    1. Cancer Biology
    2. Cell Biology
    Xiangning Bu, Nathanael Ashby ... Inhee Chung
    Research Article

    Cell crowding is a common microenvironmental factor influencing various disease processes, but its role in promoting cell invasiveness remains unclear. This study investigates the biomechanical changes induced by cell crowding, focusing on pro-invasive cell volume reduction in ductal carcinoma in situ (DCIS). Crowding specifically enhanced invasiveness in high-grade DCIS cells through significant volume reduction compared to hyperplasia-mimicking or normal cells. Mass spectrometry revealed that crowding selectively relocated ion channels, including TRPV4, to the plasma membrane in high-grade DCIS cells. TRPV4 inhibition triggered by crowding decreased intracellular calcium levels, reduced cell volume, and increased invasion and motility. During this process, TRPV4 membrane relocation primed the channel for later activation, compensating for calcium loss. Analyses of patient-derived breast cancer tissues confirmed that plasma membrane-associated TRPV4 is specific to high-grade DCIS and indicates the presence of a pro-invasive cell volume reduction mechanotransduction pathway. Hyperosmotic conditions and pharmacologic TRPV4 inhibition mimicked crowding-induced effects, while TRPV4 activation reversed them. Silencing TRPV4 diminished mechanotransduction in high-grade DCIS cells, reducing calcium depletion, volume reduction, and motility. This study uncovers a novel pro-invasive mechanotransduction pathway driven by cell crowding and identifies TRPV4 as a potential biomarker for predicting invasion risk in DCIS patients.

    1. Cell Biology
    Dan Wu, Venkateswararao Eeda ... Weidong Wang
    Research Article

    Overnutrition engenders the expansion of adipose tissue and the accumulation of immune cells, in particular, macrophages, in the adipose tissue, leading to chronic low-grade inflammation and insulin resistance. In obesity, several proinflammatory subpopulations of adipose tissue macrophages (ATMs) identified hitherto include the conventional ‘M1-like’ CD11C-expressing ATM and the newly discovered metabolically activated CD9-expressing ATM; however, the relationship among ATM subpopulations is unclear. The ER stress sensor inositol-requiring enzyme 1α (IRE1α) is activated in the adipocytes and immune cells under obesity. It is unknown whether targeting IRE1α is capable of reversing insulin resistance and obesity and modulating the metabolically activated ATMs. We report that pharmacological inhibition of IRE1α RNase significantly ameliorates insulin resistance and glucose intolerance in male mice with diet-induced obesity. IRE1α inhibition also increases thermogenesis and energy expenditure, and hence protects against high fat diet-induced obesity. Our study shows that the ‘M1-like’ CD11c+ ATMs are largely overlapping with but yet non-identical to CD9+ ATMs in obese white adipose tissue. Notably, IRE1α inhibition diminishes the accumulation of obesity-induced metabolically activated ATMs and ‘M1-like’ ATMs, resulting in the curtailment of adipose inflammation and ensuing reactivation of thermogenesis, without augmentation of the alternatively activated M2 macrophage population. Our findings suggest the potential of targeting IRE1α for the therapeutic treatment of insulin resistance and obesity.