Abstract

Autosomal-dominant Schnyder corneal dystrophy (SCD) is characterized by corneal opacification owing to overaccumulation of cholesterol. SCD is caused by mutations in UBIAD1, which utilizes geranylgeranyl pyrophosphate (GGpp) to synthesize vitamin K2. Using cultured cells, we previously showed that sterols trigger binding of UBIAD1 to the cholesterol biosynthetic enzyme HMG CoA reductase (HMGCR), thereby inhibiting its endoplasmic reticulum (ER)-associated degradation (ERAD) (Schumacher et al. 2015). GGpp triggers release of UBIAD1 from HMGCR, allowing maximal ERAD and ER-to-Golgi transport of UBIAD1. SCD-associated UBIAD1 resists GGpp-induced release and is sequestered in ER to inhibit ERAD. We now report knockin mice expressing SCD-associated UBIAD1 accumulate HMGCR in several tissues resulting from ER sequestration of mutant UBIAD1 and inhibition of HMGCR ERAD. Corneas from aged knockin mice exhibit signs of opacification and sterol overaccumulation. These results establish the physiological significance of UBIAD1 in cholesterol homeostasis and indicate inhibition of HMGCR ERAD contributes to SCD pathogenesis.

Data availability

All data generated in this study are included in the manuscript.

Article and author information

Author details

  1. Youngah Jo

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Jason S Hamilton

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3291-3125
  3. Seonghwan Hwang

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Kristina Garland

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Gennipher A Smith

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Shan Su

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9369-1642
  7. Iris Fuentes

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Sudha Neelam

    Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Bonne M Thompson

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Jeffrey G McDonald

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Russell A DeBose-Boyd

    Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, United States
    For correspondence
    Russell.Debose-Boyd@utsouthwestern.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7452-5227

Funding

National Institutes of Health (HL-20948)

  • Russell A DeBose-Boyd

National Institutes of Health (GM-112409)

  • Russell A DeBose-Boyd

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Ramanujan S Hegde, MRC Laboratory of Molecular Biology, United Kingdom

Ethics

Animal experimentation: This study was performed in strict accordance with the recommendations in the Guide for Care and Use of Laboratory Animals of the National Institutes of Health. All of the animal work described in this manuscript has been approved and conducted under the oversight of the UT Southwestern Institutional Animal Care and Use Committee (Protocol # - 2016-101636).

Version history

  1. Received: December 17, 2018
  2. Accepted: February 19, 2019
  3. Accepted Manuscript published: February 20, 2019 (version 1)
  4. Version of Record published: March 6, 2019 (version 2)

Copyright

© 2019, Jo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,550
    views
  • 271
    downloads
  • 14
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Youngah Jo
  2. Jason S Hamilton
  3. Seonghwan Hwang
  4. Kristina Garland
  5. Gennipher A Smith
  6. Shan Su
  7. Iris Fuentes
  8. Sudha Neelam
  9. Bonne M Thompson
  10. Jeffrey G McDonald
  11. Russell A DeBose-Boyd
(2019)
Schnyder corneal dystrophy-associated UBIAD1 Inhibits ER-associated degradation of HMG CoA reductase in mice
eLife 8:e44396.
https://doi.org/10.7554/eLife.44396

Share this article

https://doi.org/10.7554/eLife.44396

Further reading

    1. Biochemistry and Chemical Biology
    Boglarka Zambo, Evelina Edelweiss ... Gergo Gogl
    Research Article

    Truncation of the protein-protein interaction SH3 domain of the membrane remodeling Bridging Integrator 1 (BIN1, Amphiphysin 2) protein leads to centronuclear myopathy. Here, we assessed the impact of a set of naturally observed, previously uncharacterized BIN1 SH3 domain variants using conventional in vitro and cell-based assays monitoring the BIN1 interaction with dynamin 2 (DNM2) and identified potentially harmful ones that can be also tentatively connected to neuromuscular disorders. However, SH3 domains are typically promiscuous and it is expected that other, so far unknown partners of BIN1 exist besides DNM2, that also participate in the development of centronuclear myopathy. In order to shed light on these other relevant interaction partners and to get a holistic picture of the pathomechanism behind BIN1 SH3 domain variants, we used affinity interactomics. We identified hundreds of new BIN1 interaction partners proteome-wide, among which many appear to participate in cell division, suggesting a critical role of BIN1 in the regulation of mitosis. Finally, we show that the identified BIN1 mutations indeed cause proteome-wide affinity perturbation, signifying the importance of employing unbiased affinity interactomic approaches.

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Ramona Weber, Chung-Te Chang
    Research Article

    Recent findings indicate that the translation elongation rate influences mRNA stability. One of the factors that has been implicated in this link between mRNA decay and translation speed is the yeast DEAD-box helicase Dhh1p. Here, we demonstrated that the human ortholog of Dhh1p, DDX6, triggers the deadenylation-dependent decay of inefficiently translated mRNAs in human cells. DDX6 interacts with the ribosome through the Phe-Asp-Phe (FDF) motif in its RecA2 domain. Furthermore, RecA2-mediated interactions and ATPase activity are both required for DDX6 to destabilize inefficiently translated mRNAs. Using ribosome profiling and RNA sequencing, we identified two classes of endogenous mRNAs that are regulated in a DDX6-dependent manner. The identified targets are either translationally regulated or regulated at the steady-state-level and either exhibit signatures of poor overall translation or of locally reduced ribosome translocation rates. Transferring the identified sequence stretches into a reporter mRNA caused translation- and DDX6-dependent degradation of the reporter mRNA. In summary, these results identify DDX6 as a crucial regulator of mRNA translation and decay triggered by slow ribosome movement and provide insights into the mechanism by which DDX6 destabilizes inefficiently translated mRNAs.