NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling

Abstract

Iron is essential for survival of most organisms. All organisms have thus developed mechanisms to sense, acquire and sequester iron. In C. elegans, iron uptake and sequestration are regulated by HIF-1. We previously showed that hif-1 mutants are developmentally delayed when grown under iron limitation. Here we identify nhr-14, encoding a nuclear receptor, in a screen conducted for mutations that rescue the developmental delay of hif-1 mutants under iron limitation. nhr-14 loss upregulates the intestinal metal transporter SMF-3 to increase iron uptake in hif-1 mutants. nhr-14 mutants display increased expression of innate immune genes and DAF-16/FoxO-Class II genes, and enhanced resistance to Pseudomonas aeruginosa. These responses are dependent on the transcription factor PQM-1, which localizes to intestinal cell nuclei in nhr-14 mutants. Our data reveal how C. elegans utilizes nuclear receptors to regulate innate immunity and iron availability, and show iron sequestration as a component of the innate immune response.

Data availability

RNA-seq data has been deposited in GEO under accession code GSE89783.In addition, raw RNA-seq data is reported in the source data files

The following data sets were generated

Article and author information

Author details

  1. Malini Rajan

    Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Cole P Anderson

    Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Paul M Rindler

    Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Steven Joshua Romney

    Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Maria C Ferreira dos Santos

    Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Jason Gertz

    Department of Oncological Sciences, University of Utah, Salt Lake City, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Elizabeth A Leibold

    Department of Medicine, Division of Hematology, University of Utah, Salt Lake City, United States
    For correspondence
    betty.leibold@genetics.utah.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1000-9503

Funding

NIH Office of the Director (R01DK068602)

  • Elizabeth A Leibold

NIH Office of the Director (T32DK007115)

  • Cole P Anderson

NIH Office of the Director (T32DK007115)

  • Paul M Rindler

NIH Office of the Director (R00HG006922)

  • Jason Gertz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bruno Lemaître, École Polytechnique Fédérale de Lausanne, Switzerland

Version history

  1. Received: April 8, 2019
  2. Accepted: September 17, 2019
  3. Accepted Manuscript published: September 18, 2019 (version 1)
  4. Version of Record published: October 4, 2019 (version 2)
  5. Version of Record updated: October 15, 2019 (version 3)

Copyright

© 2019, Rajan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,647
    views
  • 389
    downloads
  • 31
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Malini Rajan
  2. Cole P Anderson
  3. Paul M Rindler
  4. Steven Joshua Romney
  5. Maria C Ferreira dos Santos
  6. Jason Gertz
  7. Elizabeth A Leibold
(2019)
NHR-14 loss of function couples intestinal iron uptake with innate immunity in C. elegans through PQM-1 signaling
eLife 8:e44674.
https://doi.org/10.7554/eLife.44674

Share this article

https://doi.org/10.7554/eLife.44674

Further reading

    1. Biochemistry and Chemical Biology
    2. Cell Biology
    Ya-Juan Wang, Xiao-Jing Di ... Ting-Wei Mu
    Research Article

    Protein homeostasis (proteostasis) deficiency is an important contributing factor to neurological and metabolic diseases. However, how the proteostasis network orchestrates the folding and assembly of multi-subunit membrane proteins is poorly understood. Previous proteomics studies identified Hsp47 (Gene: SERPINH1), a heat shock protein in the endoplasmic reticulum lumen, as the most enriched interacting chaperone for gamma-aminobutyric type A (GABAA) receptors. Here, we show that Hsp47 enhances the functional surface expression of GABAA receptors in rat neurons and human HEK293T cells. Furthermore, molecular mechanism study demonstrates that Hsp47 acts after BiP (Gene: HSPA5) and preferentially binds the folded conformation of GABAA receptors without inducing the unfolded protein response in HEK293T cells. Therefore, Hsp47 promotes the subunit-subunit interaction, the receptor assembly process, and the anterograde trafficking of GABAA receptors. Overexpressing Hsp47 is sufficient to correct the surface expression and function of epilepsy-associated GABAA receptor variants in HEK293T cells. Hsp47 also promotes the surface trafficking of other Cys-loop receptors, including nicotinic acetylcholine receptors and serotonin type 3 receptors in HEK293T cells. Therefore, in addition to its known function as a collagen chaperone, this work establishes that Hsp47 plays a critical and general role in the maturation of multi-subunit Cys-loop neuroreceptors.

    1. Cell Biology
    Yuki Date, Yukiko Sasazawa ... Shinji Saiki
    Research Article Updated

    The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson’s disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.