1. Developmental Biology
Download icon

Computational 3D histological phenotyping of whole zebrafish by X-ray histotomography

  1. Yifu Ding
  2. Daniel J Vanselow
  3. Maksim A Yakovlev
  4. Spencer R Katz
  5. Alex Y Lin
  6. Darin P Clark
  7. Phillip Vargas
  8. Xuying Xin
  9. Jean E Copper
  10. Victor A Canfield
  11. Khai C Ang
  12. Yuxin Wang
  13. Xianghui Xiao
  14. Francesco De Carlo
  15. Damian B van Rossum
  16. Patrick La Riviere
  17. Keith Cheng  Is a corresponding author
  1. Penn State College of Medicine, United States
  2. Duke University, United States
  3. The University of Chicago, United States
  4. Motorola Mobility, United States
  5. Argonne National Laboratory, United States
Tools and Resources
  • Cited 3
  • Views 4,458
  • Annotations
Cite this article as: eLife 2019;8:e44898 doi: 10.7554/eLife.44898

Abstract

Organismal phenotypes frequently involve multiple organ systems. Histology is a powerful way to detect cellular and tissue phenotypes, but is largely descriptive and subjective. To determine how synchrotron-based X-ray micro-tomography (micro-CT) can yield 3-dimensional whole-organism images suitable for quantitative histological phenotyping, we scanned whole zebrafish, a small vertebrate model with diverse tissues, at ~1-micron voxel resolutions. Using micro-CT optimized for cellular characterization (histotomography), brain nuclei were computationally segmented and assigned to brain regions. Shape and volume were computed for populations of nuclei such as those of motor neurons and red blood cells. Striking individual phenotypic variation was apparent from color maps of computed cell density. Unlike histology, histotomography allows the detection of phenotypes that require millimeter scale context in multiple planes. We expect the computational and visual insights into 3D tissue architecture provided by histotomography to be useful for reference atlases, hypothesis generation, comprehensive organismal screens, and diagnostics.

Article and author information

Author details

  1. Yifu Ding

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4629-5858
  2. Daniel J Vanselow

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9221-8634
  3. Maksim A Yakovlev

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Spencer R Katz

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5586-3562
  5. Alex Y Lin

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Darin P Clark

    Center for In Vivo Microscopy, Duke University, Durham, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Phillip Vargas

    Department of Radiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Xuying Xin

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Jean E Copper

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Victor A Canfield

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4359-1790
  11. Khai C Ang

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yuxin Wang

    Motorola Mobility, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Xianghui Xiao

    Advanced Photon Source, Argonne National Laboratory, Lemont, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Francesco De Carlo

    Advanced Photon Source, Argonne National Laboratory, Lemont, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Damian B van Rossum

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    Competing interests
    The authors declare that no competing interests exist.
  16. Patrick La Riviere

    Department of Radiology, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3415-9864
  17. Keith Cheng

    The Jake Gittlen Laboratories for Cancer Research, Penn State College of Medicine, Hershey, United States
    For correspondence
    kcheng76@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5350-5825

Funding

NIH Office of the Director (R24-OD018559)

  • Patrick La Riviere
  • Keith Cheng

National Institutes of Health (R24-RR017441)

  • Patrick La Riviere
  • Keith Cheng

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All procedures on live animals were approved by the Institutional Animal Care and Use Committee (IACUC) at the Pennsylvania State University, ID: PRAMS201445659, Groundwork for a Synchrotron MicroCT Imaging Resource for Biology (SMIRB).

Reviewing Editor

  1. Richard M White, Memorial Sloan Kettering Cancer Center, United States

Publication history

  1. Received: January 5, 2019
  2. Accepted: May 4, 2019
  3. Accepted Manuscript published: May 7, 2019 (version 1)
  4. Version of Record published: June 11, 2019 (version 2)

Copyright

© 2019, Ding et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,458
    Page views
  • 406
    Downloads
  • 3
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Developmental Biology
    2. Neuroscience
    Youngsik Woo et al.
    Research Article
    1. Developmental Biology
    2. Human Biology and Medicine
    Daniyal J Jafree et al.
    Short Report