Junction Mapper is a novel computer vision tool to decipher cell-cell contact phenotypes

Abstract

Stable cell-cell contacts underpin tissue architecture and organization. Quantification of junctions of mammalian epithelia requires laborious manual measurements that are a major roadblock for mechanistic studies. We designed Junction Mapper as an open access, semi-automated software that defines the status of adhesiveness via the simultaneous measurement of pre-defined parameters at cell-cell contacts. It identifies contacting interfaces and corners with minimal user input and quantifies length, area and intensity of junction markers. Its ability to measure fragmented junctions is unique. Importantly, junctions that considerably deviate from the contiguous staining and straight contact phenotype seen in epithelia are also successfully quantified (i.e. cardiomyocytes or endothelia). Distinct phenotypes of junction disruption can be clearly differentiated among various oncogenes, depletion of actin regulators or stimulation with other agents. Junction Mapper is thus a powerful, unbiased and highly applicable software for profiling cell-cell adhesion phenotypes and facilitate studies on junction dynamics in health and disease.

Data availability

The Junction Mapper code is licensed in github as GNU GENERAL PUBLIC LICENSE. The address is:https://github.com/ImperialCollegeLondon/Junction_MapperThe software is downloadable from as an executable jar file from;https://dataman.bioinformatics.ic.ac.uk/junction_mapper/The image data used in this study has been previously published elsewhere (Erasmus et al., 2016; Huveneer et al., 2012) or are in preparation in separate mechanistic studies (Bruche et al., in preparation).Excel files of the output of parameters and calculations has been provided as source data files online.

Article and author information

Author details

  1. Helena Brezovjakova

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3554-6084
  2. Chris Tomlinson

    Bioinformatics Data Science Group, Faculty of Medicine, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Noor Mohd Naim

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Pamela Swiatlowska

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3705-7495
  5. Jennifer E Erasmus

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  6. Stephan Huveneers

    Department Medical Biochemistry, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, Netherlands
    Competing interests
    The authors declare that no competing interests exist.
  7. Julia Gorelik

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1148-9158
  8. Susann Bruche

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    For correspondence
    susann.bruche@dpag.ox.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5814-7166
  9. Vania MM Braga

    National Heart and Lung Institute, Imperial College London, London, United Kingdom
    For correspondence
    v.braga@imperial.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0546-7163

Funding

Medical Research Council (MR/M026310/1)

  • Vania MM Braga

Biotechnology and Biological Sciences Research Council (BB/M022617/1)

  • Vania MM Braga

Cancer Research UK (C1282/A11980)

  • Vania MM Braga

Netherlands Organization of Scientific Research (VIDI 016.156.327)

  • Stephan Huveneers

Prime Minister's Office, Brunei Darussalam (JPLL/A/4:A[2010]/J1(703))

  • Noor Mohd Naim

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Brezovjakova et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 6,209
    views
  • 678
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Helena Brezovjakova
  2. Chris Tomlinson
  3. Noor Mohd Naim
  4. Pamela Swiatlowska
  5. Jennifer E Erasmus
  6. Stephan Huveneers
  7. Julia Gorelik
  8. Susann Bruche
  9. Vania MM Braga
(2019)
Junction Mapper is a novel computer vision tool to decipher cell-cell contact phenotypes
eLife 8:e45413.
https://doi.org/10.7554/eLife.45413

Share this article

https://doi.org/10.7554/eLife.45413

Further reading

    1. Cancer Biology
    2. Cell Biology
    Zijing Wang, Bihan Xia ... Jilin Yang
    Research Article

    Bestrophin isoform 4 (BEST4) is a newly identified subtype of the calcium-activated chloride channel family. Analysis of colonic epithelial cell diversity by single-cell RNA-sequencing has revealed the existence of a cluster of BEST4+ mature colonocytes in humans. However, if the role of BEST4 is involved in regulating tumour progression remains largely unknown. In this study, we demonstrate that BEST4 overexpression attenuates cell proliferation, colony formation, and mobility in colorectal cancer (CRC) in vitro, and impedes the tumour growth and the liver metastasis in vivo. BEST4 is co-expressed with hairy/enhancer of split 4 (HES4) in the nucleus of cells, and HES4 signals BEST4 by interacting with the upstream region of the BEST4 promoter. BEST4 is epistatic to HES4 and downregulates TWIST1, thereby inhibiting epithelial-to-mesenchymal transition (EMT) in CRC. Conversely, knockout of BEST4 using CRISPR/Cas9 in CRC cells revitalises tumour growth and induces EMT. Furthermore, the low level of the BEST4 mRNA is correlated with advanced and the worse prognosis, suggesting its potential role involving CRC progression.

    1. Cancer Biology
    Bruno Bockorny, Lakshmi Muthuswamy ... Senthil K Muthuswamy
    Tools and Resources

    Pancreatic cancer has the worst prognosis of all common tumors. Earlier cancer diagnosis could increase survival rates and better assessment of metastatic disease could improve patient care. As such, there is an urgent need to develop biomarkers to diagnose this deadly malignancy. Analyzing circulating extracellular vesicles (cEVs) using ‘liquid biopsies’ offers an attractive approach to diagnose and monitor disease status. However, it is important to differentiate EV-associated proteins enriched in patients with pancreatic ductal adenocarcinoma (PDAC) from those with benign pancreatic diseases such as chronic pancreatitis and intraductal papillary mucinous neoplasm (IPMN). To meet this need, we combined the novel EVtrap method for highly efficient isolation of EVs from plasma and conducted proteomics analysis of samples from 124 individuals, including patients with PDAC, benign pancreatic diseases and controls. On average, 912 EV proteins were identified per 100 µL of plasma. EVs containing high levels of PDCD6IP, SERPINA12, and RUVBL2 were associated with PDAC compared to the benign diseases in both discovery and validation cohorts. EVs with PSMB4, RUVBL2, and ANKAR were associated with metastasis, and those with CRP, RALB, and CD55 correlated with poor clinical prognosis. Finally, we validated a seven EV protein PDAC signature against a background of benign pancreatic diseases that yielded an 89% prediction accuracy for the diagnosis of PDAC. To our knowledge, our study represents the largest proteomics profiling of circulating EVs ever conducted in pancreatic cancer and provides a valuable open-source atlas to the scientific community with a comprehensive catalogue of novel cEVs that may assist in the development of biomarkers and improve the outcomes of patients with PDAC.