Vps8 overexpression inhibits HOPS-dependent trafficking routes by outcompeting Vps41/Lt

  1. Péter Lőrincz  Is a corresponding author
  2. Lili Anna Kenéz
  3. Sarolta Tóth
  4. Viktória Kiss
  5. Ágnes Varga
  6. Tamás Csizmadia
  7. Zsófia Simon-Vecsei
  8. Gábor Juhász  Is a corresponding author
  1. Eötvös Loránd University, Hungary
  2. Hungarian Academy of Sciences, Hungary

Abstract

Two related multisubunit tethering complexes promote endolysosomal trafficking in all eukaryotes: Rab5-binding CORVET that was suggested to transform into Rab7-binding HOPS. We have previously identified miniCORVET, containing Drosophila Vps8 and three shared core proteins, which is required for endosome maturation upstream of HOPS in highly endocytic cells (Lorincz et al., 2016a). Here we show that Vps8 overexpression inhibits HOPS-dependent trafficking routes including late endosome maturation, autophagosome-lysosome fusion, crinophagy and lysosome-related organelle formation. Mechanistically, Vps8 overexpression abolishes the late endosomal localization of HOPS-specific Vps41/Lt and prevents HOPS assembly. Proper ratio of Vps8 to Vps41 is thus critical because Vps8 negatively regulates HOPS by outcompeting Vps41. Endosomal recruitment of miniCORVET- or HOPS-specific subunits requires proper complex assembly, and Vps8/miniCORVET is dispensable for autophagy, crinophagy and lysosomal biogenesis. These data together indicate the recruitment of these complexes to target membranes independent of each other in Drosophila, rather than their transformation during vesicle maturation.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Article and author information

Author details

  1. Péter Lőrincz

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    For correspondence
    concrete05@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7374-667X
  2. Lili Anna Kenéz

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  3. Sarolta Tóth

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  4. Viktória Kiss

    Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  5. Ágnes Varga

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  6. Tamás Csizmadia

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
  7. Zsófia Simon-Vecsei

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7909-4895
  8. Gábor Juhász

    Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest, Hungary
    For correspondence
    szmrt@elte.hu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-8548-8874

Funding

Magyar Tudományos Akadémia (LP-2014/2)

  • Gábor Juhász

Ministry of Human Capacities of Hungary (ÚNKP-18-4-ELTE-409)

  • Zsófia Simon-Vecsei

Magyar Tudományos Akadémia (PPD-222/2018)

  • Péter Lőrincz

Magyar Tudományos Akadémia (BO/00652/17)

  • Zsófia Simon-Vecsei

National Research, Development and Innovation Office of Hungary (GINOP-2.3.2-15-2016-00006)

  • Gábor Juhász

National Research, Development and Innovation Office of Hungary (GINOP-2.3.2-15-2016-00032)

  • Gábor Juhász

National Research, Development and Innovation Office of Hungary (K119842)

  • Gábor Juhász

National Research, Development and Innovation Office of Hungary (KKP129797)

  • Gábor Juhász

National Research, Development and Innovation Office of Hungary (PD124594)

  • Zsófia Simon-Vecsei

Ministry of Human Capacities of Hungary (ÚNKP-18-2-II-ELTE-32)

  • Lili Anna Kenéz

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Lőrincz et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,317
    views
  • 383
    downloads
  • 21
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Péter Lőrincz
  2. Lili Anna Kenéz
  3. Sarolta Tóth
  4. Viktória Kiss
  5. Ágnes Varga
  6. Tamás Csizmadia
  7. Zsófia Simon-Vecsei
  8. Gábor Juhász
(2019)
Vps8 overexpression inhibits HOPS-dependent trafficking routes by outcompeting Vps41/Lt
eLife 8:e45631.
https://doi.org/10.7554/eLife.45631

Share this article

https://doi.org/10.7554/eLife.45631

Further reading

    1. Cell Biology
    2. Physics of Living Systems
    Deb Sankar Banerjee, Shiladitya Banerjee
    Research Article

    Accurate regulation of centrosome size is essential for ensuring error-free cell division, and dysregulation of centrosome size has been linked to various pathologies, including developmental defects and cancer. While a universally accepted model for centrosome size regulation is lacking, prior theoretical and experimental works suggest a centrosome growth model involving autocatalytic assembly of the pericentriolar material. Here, we show that the autocatalytic assembly model fails to explain the attainment of equal centrosome sizes, which is crucial for error-free cell division. Incorporating latest experimental findings into the molecular mechanisms governing centrosome assembly, we introduce a new quantitative theory for centrosome growth involving catalytic assembly within a shared pool of enzymes. Our model successfully achieves robust size equality between maturing centrosome pairs, mirroring cooperative growth dynamics observed in experiments. To validate our theoretical predictions, we compare them with available experimental data and demonstrate the broad applicability of the catalytic growth model across different organisms, which exhibit distinct growth dynamics and size scaling characteristics.

    1. Cell Biology
    Jingjing Li, Xinyue Wang ... Vincent Archambault
    Research Article

    In animals, mitosis involves the breakdown of the nucleus. The reassembly of a nucleus after mitosis requires the reformation of the nuclear envelope around a single mass of chromosomes. This process requires Ankle2 (also known as LEM4 in humans) which interacts with PP2A and promotes the function of the Barrier-to-Autointegration Factor (BAF). Upon dephosphorylation, BAF dimers cross-bridge chromosomes and bind lamins and transmembrane proteins of the reassembling nuclear envelope. How Ankle2 functions in mitosis is incompletely understood. Using a combination of approaches in Drosophila, along with structural modeling, we provide several lines of evidence that suggest that Ankle2 is a regulatory subunit of PP2A, explaining how it promotes BAF dephosphorylation. In addition, we discovered that Ankle2 interacts with the endoplasmic reticulum protein Vap33, which is required for Ankle2 localization at the reassembling nuclear envelope during telophase. We identified the interaction sites of PP2A and Vap33 on Ankle2. Through genetic rescue experiments, we show that the Ankle2/PP2A interaction is essential for the function of Ankle2 in nuclear reassembly and that the Ankle2/Vap33 interaction also promotes this process. Our study sheds light on the molecular mechanisms of post-mitotic nuclear reassembly and suggests that the endoplasmic reticulum is not merely a source of membranes in the process, but also provides localized enzymatic activity.