7 figures, 1 table and 7 additional files

Figures

Figure 1 with 1 supplement
Identification and quantification of synaptic OXT content in neurohypophyseal axonal termini.

(A–C) Scheme describing the neurohypophyseal vasculature and synapses in 5 days post-fertilization (dpf) transgenic reporter Tg(oxt:EGFP). The dense neurohypophyseal synapses (NS) were used as an …

Figure 1—source data 1

Experimental data for Figure 1: colocalization analysis of synaptic OXT and EGFP fluorescence.

The excel sheet includes values for weighted colocalization coefficients calculated from confocal images of immunostained transgenic (oxt:gal4; UAS:Syp-EGFP) larval neurohypophysis.

https://cdn.elifesciences.org/articles/45650/elife-45650-fig1-data1-v3.xlsx
Figure 1—video 1
Confocal Z-stack images and three-dimensional render of 5 days post-fertilization (dpf) transgenic reporter zebrafish Tg(oxt:EGFP) following immunostaining with anti-EGFP and a specific antibody against endogenous OXT protein.
Osmotic challenge decreases synaptic OXT neuropeptide content.

(A) Transgenic Tg(oxt:EGFP) larvae at eight dpf were treated with hypertonic solution (25% artificial sea salt in Danieau buffer) for 20 or 60 min. The larvae that underwent 60 min treatment were …

Figure 2—source data 1

Experimental data for Figure 2: Neurohypophyseal synaptic parameters upon hyperosmotic challenge.

The excel sheet includes values for number and volume of neurohypophyseal synapses and OXT puncta upon hyperosmotic challenge.

https://cdn.elifesciences.org/articles/45650/elife-45650-fig2-data1-v3.xlsx
Figure 3 with 1 supplement
Actin polymerization regulates synaptic OXT content.

(A–D) Spatial relationship between actin and neuropeptide in hypophysis revealed by super-resolution microscopy. Stochastic optical reconstruction microscopy (STORM) images of the neurohypophyseal …

Figure 3—source data 1

Experimental data for Figure 3: Neurohypophyseal synaptic parameters upon actin perturbation.

The excel sheet includes values for number and volume of neurohypophyseal synapses and OXT puncta from confocal imaging of larvae that were subjected to DMSO vs cytochalasin treatment or embryos that underwent transgenesis experiment for OXT-neuron specific EGFP vs cofilin expression.

https://cdn.elifesciences.org/articles/45650/elife-45650-fig3-data1-v3.xlsx
Figure 3—video 1
Three-dimensional render showing STORM images of endogenous OXT and Lifeact-EGFP in neurohypophyseal synapses.
Robo2 regulates synaptic actin dynamics.

(A) robo2 is expressed in larval zebrafish neurosecretory preoptic area (NPO) and colocalizes with Oxytocin neurons. Confocal Z-stack images showing fluorescent in situ hybridization (FISH) of …

Figure 4—source data 1

Experimental data for Figure 4: Actin dynamics in neurohypophyseal synapses.

The excel sheet includes values for FRAP data of neurohypophyseal synaptic Lifeact-EGFP in robo2 +/+ vs robo2 -/- larvae. The full-scale normalized values, dynamic and stable fraction generated from Easy-Frap software are shown.

https://cdn.elifesciences.org/articles/45650/elife-45650-fig4-data1-v3.xlsx
Slit3-Robo2 signaling regulates synaptic OXT levels.

(A–E) Assessment of synaptic oxytocin content in robo2 mutant was performed as described in Figure 1F. Graph showing the number and size of neurohypophyseal synapses (NS) (A,B) and colocalizing OXT …

Figure 5—source data 1

Experimental data for Figure 5: Neurohypophyseal synaptic parameters upon gain- or loss-of function of slit3 or robo2.

The excel sheet includes values for number and volume of neurohypophyseal synapses and OXT puncta from confocal imaging of larval neurohypophysis of multiple experiments namely: 1) robo2 +/+ vs robo2 -/- 2) Mock vs morpholino-injected embryos 3) Mosaic transgenesis experiments by hypophyseal expression of tRFP vs slit3.

https://cdn.elifesciences.org/articles/45650/elife-45650-fig5-data1-v3.xlsx
Figure 6 with 2 supplements
Robo2 regulates synaptic OXT dynamics.

(A) Schematic of novel transgenic OXT tool Tg(oxt:OXT-SP-EGFP-OXT), in which oxt promoter drives expression of Oxytocin precursor protein with an internally-tagged EGFP at the C-terminus of the …

Figure 6—source data 1

Experimental data for Figure 6: OXT-EGFP dynamics in neurohypophyseal synapses.

The excel sheet includes values for FRAP data of neurohypophyseal synaptic OXT-EGFP in robo2 +/+ vs robo2 -/- larvae. The full-scale normalized values generated from Easy-Frap software are shown.

https://cdn.elifesciences.org/articles/45650/elife-45650-fig6-data1-v3.xlsx
Figure 6—figure supplement 1
Specificity of antibodies to oxytocin and neurophysin.

(A) Schema of protein coded by oxt gene. Antibodies anti-OXT and PS45 were targeted to processed OXT and neurophysin respectively. SP denotes signal peptide, arrow indicates cleavage site. …

Figure 6—video 1
Three-dimensional render showing STORM images of endogenous OXT in neurohypophyseal synapses of 5 days post-fertilization (dpf) old zebrafish larvae.
Figure 7 with 1 supplement
Robo2 regulates synaptic OXT levels via Cdc42.

(A,B) Assessment of the effect of Oxytocin neuron-specific overexpression of actin-regulating protein Cdc42 in Tg(oxt:Gal4) larvae. Transgenic embryos expressing the oxt:Gal4 driver were injected …

Figure 7—source data 1

Experimental data for Figure 7: Synaptic fluorescence values upon OXT-neuron specific Cdc42 over-expression.

The excel sheet includes values for EGFP- and OXT- fluorescence values of neurohypophyseal synapses in larvae that were subjected to OXT-neuron specific EGFP or Cdc42(T17N) or Cdc42(G12V) expression in robo2 +/+ vs robo2 -/-.

https://cdn.elifesciences.org/articles/45650/elife-45650-fig7-data1-v3.xlsx
Figure 7—figure supplement 1
Cdc42 regulates synaptic OXT levels.

(A) Assessment of the effect of Oxytocin neuron-specific overexpression of actin-regulating protein Cdc42 in Tg(oxt:Gal4) larvae. Transgenic embryos expressing the oxt:Gal4 driver were injected with …

Tables

Key resources table
Reagent type
(species) or
resource
DesignationSource or
reference
IdentifiersAdditional
information
Genetic reagent, TL (D. rerio)Tg(oxt:EGFP)wz01(Blechman et al., 2011)ZDB-ALT-111103–1
Genetic reagent, TL (D. rerio)Tg(oxt:gal4)wz06(Anbalagan et al., 2018)ZDB-ALT-171113–2
Genetic reagent, TL (D. rerio)Tg(oxt:OXTSP-EGFP-OXT)wz14This manuscriptZDB-ALT-181219–3
Genetic reagent, TL (D. rerio)Tg(UAS:sypb-EGFP)biu5(Zada et al., 2014)ZDB-ALT-150115–1Lior Appelbaum
(Bar-Ilan Univ.)
Genetic reagent, TL (D. rerio)Tg(UAS:Lifeact-GFP)mu271(Helker et al., 2013)ZDB-ALT-130624–2Wiebke Herzog (Univ. of Muenster)
Genetic reagent, TL (D. rerio)Tg(UAS:BotxLCB-GFP)icm21(Sternberg et al., 2016)ZDB-ALT-160119–9Claire Wyart (ICM, Paris)
Genetic reagent, TL (D. rerio)Tg(UAS:NTR-mCherry)c264(Davison et al., 2007)ZDB-ALT-070316–1
Genetic reagent, TL (D. rerio)Tg(−1.0pomca:Gal4-VP16)wz05(Anbalagan et al., 2018)ZDB-ALT-171113–1
Genetic reagent, TL (D. rerio)robo2ti272z(Fricke et al., 2001)ZDB-ALT-980203–1097Joshua Bonkowsky (Univ. of Utah)
Recombinant DNA reagentTol2 pDEST myl7:mCherry(Golan et al., 2016)Berta Levavi-Sivan, HUJI, Rehovot
Recombinant DNA reagentTol2 10xUAS:EGFP; myl7:mCherryThis manuscriptMaterials and methods - Transgenesis experiments
Recombinant DNA reagentTol2 oxt:OXTSP-EGFP-OXT; myl7:EGFPThis manuscriptMaterials andmethods -Transgenesis experiments
Recombinant DNA reagentTol2 UAS:Cdc42-G12V-EGFP(Ando et al., 2013)Naoki Mochizuki (NCVC, Osaka)
Recombinant DNA reagentTol2 UAS:Cdc42-T17N-EGFP(Ando et al., 2013)Naoki Mochizuki (NCVC, Osaka)
Recombinant DNA reagentTol2 pME mCherry-Utrophin-CH(Andersen et al., 2011)Mary Hallaron (Univ. of Wisconsin)
Recombinant DNA reagentTol2 10xUAS:mCherry-Utrophin-CH; myl7:mCherryThis manuscriptMaterials and methods - Visualization of synaptic F-actin
Recombinant DNA reagentTol2 pME Slit3(SignalPeptide)-EmeraldGFP-Slit3This manuscriptJoshua Bonkowsky (Univ. of Utah)
Recombinant DNA reagentTol2 10xUAS: Slit3(SignalPeptide)-EmeraldGFP-Slit3; myl7:mCherryThis manuscriptMaterials and methods -Transgenesis experiments
AntibodyGuinea pig polyclonal, anti-OXTPeninsula labsT-5021; RRID:AB_518526(1:200)
AntibodyRabbit polyclonal, anti-GFPThermoFisherA11122; RRID:AB_221569(1:200)
AntibodyMouse monoclonal, anti-Neurophysin(Ben-Barak et al., 1984)PS45; RRID:AB_2062089Harold Gainer (NINDS, Bethesda)
AntibodyAlexa 488- or 647-
Secondary antibodies
Jackson ImmunoResearch Laboratories(1:200) Materials and methods - Immuno-fluorescent staining
AntibodyAlexa 568- or 647-
Secondary antibodies
Invitrogen(1:2000)
Materials andmethods - Visualization of synaptic F-actin
Chemical compoundCytochalasin DSigmaC8273400 nM
Chemical compoundGlucose oxidaseSigmaG21338440 AU
Chemical compoundCatalaseSigmaC4070200 AU
SoftwareR(R Development Core Team, 2013)Materials and methods – Statistical analysis
SoftwareTurboreg plugin(Thévenaz et al., 1998)Materials andmethods – Statistical analysis
SoftwareEasyFRAP(Rapsomaniki et al., 2012)Materials andmethods – FRAP analysis
Sequence-based reagentTATATCCTCTGAGGCTGATAGCAGCGene Tools, (Barresi et al., 2005)ZDB-MRPHLNO-050927–3Materials andmethods -Transgenesis experiments.
slit3 knockdown
Sequence-based reagentgaatgactcctcgtcgctct and gctgaggcatcttgtctgtaSigmaMaterials andmethods -Animals. robo2 genotyping
Sequence-based reagentgcatttacaacagctccatcSigmaMaterials andmethods -Animals.robo2 sequencing primer
Sequence-based reagenttgtacaggcagatgtcaggc and TAATACGACTCACTATAGGG-tcctcctccagtagagccagSigmaMaterials andmethods - In situ hybridization. PCR primers for robo2 probe

Additional files

Source code 1

R script for data extraction: R script to extract animal-wise neurohypophyseal synaptic parameters from the Volocity software-derived batch output files.

The script generates tables with parameters such as animal ID, synapse or puncta ID, volume etc. In this manuscript, the script has been used for all the analysis in which number, synaptic OXT content and fluorescence values has been analyzed (Figures 15 and 7).

https://cdn.elifesciences.org/articles/45650/elife-45650-code1-v3.r
Source code 2

R script for data transformation: R script to log-transform the neurohypophyseal synaptic volume data.

In this manuscript, the script has been used for all the analysis in which number, synaptic OXT content and fluorescence values has been analyzed (Figures 15 and 7).

https://cdn.elifesciences.org/articles/45650/elife-45650-code2-v3.r
Source code 3

R script for data analysis: R script to analyze log-transformed neurohypophyseal synaptic data.

The mean number and volume of neurohypophyseal synapse and OXT puncta will be generated upon execution of the script. In this manuscript, the script has been used for all the analysis in which number, synaptic OXT content and fluorescence values has been analyzed (Figures 15 and 7).

https://cdn.elifesciences.org/articles/45650/elife-45650-code3-v3.r
Source code 4

R script for Lifeact-EGFP FRAP data analysis: R script to analyze neurohypophyseal synapse.

Lifeact-EGFP FRAP data by linear-mixed model (Figure 4D).

https://cdn.elifesciences.org/articles/45650/elife-45650-code4-v3.rmd
Source code 5

R script for OXT-EGFP FRAP data analysis: R script to analyze neurohypophyseal synapse.

OXT-EGFP FRAP data by linear-mixed model (Figure 6I).

https://cdn.elifesciences.org/articles/45650/elife-45650-code5-v3.rmd
Source code 6

R script for correlation analysis: R script to analyze and plot neurohypophyseal synaptic.

EGFP vs OXT fluorescence by linear regression (Figure 7).

https://cdn.elifesciences.org/articles/45650/elife-45650-code6-v3.r
Transparent reporting form
https://cdn.elifesciences.org/articles/45650/elife-45650-transrepform-v3.pdf

Download links