Genome plasticity in Candida albicans is driven by long repeat sequences

  1. Robert T Todd
  2. Tyler D Wikoff
  3. Anja Forche
  4. Anna Selmecki  Is a corresponding author
  1. Creighton University Medical School, United States
  2. Bowdoin College, United States

Abstract

Genome rearrangements resulting in copy number variation (CNV) and loss of heterozygosity (LOH) are frequently observed during the somatic evolution of cancer and promote rapid adaptation of fungi to novel environments. In the human fungal pathogen Candida albicans, CNV and LOH confer increased virulence and antifungal drug resistance, yet the mechanisms driving these rearrangements are not completely understood. Here, we unveil an extensive array of long repeat sequences (65-6499bp) that are associated with CNV, LOH, and chromosomal inversions. Many of these long repeat sequences are uncharacterized and encompass one or more coding sequences that are actively transcribed. Repeats associated with genome rearrangements are predominantly inverted and separated by up to ~1.6Mb, an extraordinary distance for homology-based DNA repair/recombination in yeast. These repeat sequences are a significant source of genome plasticity across diverse strain backgrounds including clinical, environmental, and experimentally evolved isolates, and previously uncharacterized variation in the reference genome.

Data availability

All data generated and analyzed during this study are included in the manuscript and supporting files. Source data files have a been provided for Figure 1, Figure 1-figure supplement 1, Figure 2, Figure 2-figure supplement 2, Figure 2-figure supplement 3, Figure 6, and Figure 6-figure supplement 1.All genomic data are deposited in SRA under accession PRJNA510147.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Robert T Todd

    Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4522-7124
  2. Tyler D Wikoff

    Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anja Forche

    Department of Biology, Bowdoin College, Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Selmecki

    Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, United States
    For correspondence
    annaselmecki@creighton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3298-2400

Funding

Nebraska LB692 New Initiatives Grants (LB692 NE Tobacco Settlement Biomedical Research Development New Initiative Grant)

  • Anna Selmecki

Nebraska Established Program to Stimulate Competitive Research (EPSCoR First Award)

  • Anna Selmecki

Nebraska Department of Health and Human Services (LB506-2017-55)

  • Anna Selmecki

Creighton University (CURAS Faculty Faculty Research Fund)

  • Anna Selmecki

National Center for Research Resources (P20RR018788 sub award)

  • Anna Selmecki

National Institutes of Health (R15 AI090633)

  • Anja Forche

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kevin J Verstrepen, VIB-KU Leuven Center for Microbiology, Belgium

Publication history

  1. Received: February 10, 2019
  2. Accepted: June 7, 2019
  3. Accepted Manuscript published: June 7, 2019 (version 1)
  4. Version of Record published: June 24, 2019 (version 2)

Copyright

© 2019, Todd et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,773
    Page views
  • 649
    Downloads
  • 47
    Citations

Article citation count generated by polling the highest count across the following sources: Scopus, Crossref, PubMed Central.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Robert T Todd
  2. Tyler D Wikoff
  3. Anja Forche
  4. Anna Selmecki
(2019)
Genome plasticity in Candida albicans is driven by long repeat sequences
eLife 8:e45954.
https://doi.org/10.7554/eLife.45954

Further reading

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Hayley Porter, Yang Li ... Suzana Hadjur
    Research Article Updated

    Most studies of cohesin function consider the Stromalin Antigen (STAG/SA) proteins as core complex members given their ubiquitous interaction with the cohesin ring. Here, we provide functional data to support the notion that the SA subunit is not a mere passenger in this structure, but instead plays a key role in the localization of cohesin to diverse biological processes and promotes loading of the complex at these sites. We show that in cells acutely depleted for RAD21, SA proteins remain bound to chromatin, cluster in 3D and interact with CTCF, as well as with a wide range of RNA binding proteins involved in multiple RNA processing mechanisms. Accordingly, SA proteins interact with RNA, and R-loops, even in the absence of cohesin. Our results place SA1 on chromatin upstream of the cohesin ring and reveal a role for SA1 in cohesin loading which is independent of NIPBL, the canonical cohesin loader. We propose that SA1 takes advantage of structural R-loop platforms to link cohesin loading and chromatin structure with diverse functions. Since SA proteins are pan-cancer targets, and R-loops play an increasingly prevalent role in cancer biology, our results have important implications for the mechanistic understanding of SA proteins in cancer and disease.

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Anil Kumar Vijjamarri, Xiao Niu ... Alan G Hinnebusch
    Research Article

    Degradation of most yeast mRNAs involves decapping by Dcp1/Dcp2. DEAD-box protein Dhh1 has been implicated as an activator of decapping, in coupling codon non-optimality to enhanced degradation, and as a translational repressor, but its functions in cells are incompletely understood. RNA-Seq analyses coupled with CAGE sequencing of all capped mRNAs revealed increased abundance of hundreds of mRNAs in dcp2Δ cells that appears to result directly from impaired decapping rather than elevated transcription. Interestingly, only a subset of mRNAs requires Dhh1 for targeting by Dcp2, and also generally requires the other decapping activators Pat1, Edc3 or Scd6; whereas most of the remaining transcripts utilize NMD factors for Dcp2-mediated turnover. Neither inefficient translation initiation nor stalled elongation appears to be a major driver of Dhh1-enhanced mRNA degradation. Surprisingly, ribosome profiling revealed that dcp2Δ confers widespread changes in relative translational efficiencies (TEs) that generally favor well-translated mRNAs. Because ribosome biogenesis is reduced while capped mRNA abundance is increased by dcp2&Delta, we propose that an increased ratio of mRNA to ribosomes increases competition among mRNAs for limiting ribosomes to favor efficiently translated mRNAs in dcp2Δ cells. Interestingly, genes involved in respiration or utilization of alternative carbon or nitrogen sources are up-regulated, and both mitochondrial function and cell filamentation are elevated in dcp2Δ cells, suggesting that decapping sculpts gene expression post-transcriptionally to fine-tune metabolic pathways and morphological transitions according to nutrient availability.