1. Chromosomes and Gene Expression
  2. Genetics and Genomics
Download icon

Genome plasticity in Candida albicans is driven by long repeat sequences

  1. Robert T Todd
  2. Tyler D Wikoff
  3. Anja Forche
  4. Anna Selmecki  Is a corresponding author
  1. Creighton University Medical School, United States
  2. Bowdoin College, United States
Research Article
  • Cited 0
  • Views 650
  • Annotations
Cite this article as: eLife 2019;8:e45954 doi: 10.7554/eLife.45954

Abstract

Genome rearrangements resulting in copy number variation (CNV) and loss of heterozygosity (LOH) are frequently observed during the somatic evolution of cancer and promote rapid adaptation of fungi to novel environments. In the human fungal pathogen Candida albicans, CNV and LOH confer increased virulence and antifungal drug resistance, yet the mechanisms driving these rearrangements are not completely understood. Here, we unveil an extensive array of long repeat sequences (65-6499bp) that are associated with CNV, LOH, and chromosomal inversions. Many of these long repeat sequences are uncharacterized and encompass one or more coding sequences that are actively transcribed. Repeats associated with genome rearrangements are predominantly inverted and separated by up to ~1.6Mb, an extraordinary distance for homology-based DNA repair/recombination in yeast. These repeat sequences are a significant source of genome plasticity across diverse strain backgrounds including clinical, environmental, and experimentally evolved isolates, and previously uncharacterized variation in the reference genome.

Article and author information

Author details

  1. Robert T Todd

    Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4522-7124
  2. Tyler D Wikoff

    Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Anja Forche

    Department of Biology, Bowdoin College, Brunswick, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Anna Selmecki

    Department of Medical Microbiology and Immunology, Creighton University Medical School, Omaha, United States
    For correspondence
    annaselmecki@creighton.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3298-2400

Funding

Nebraska LB692 New Initiatives Grants (LB692 NE Tobacco Settlement Biomedical Research Development New Initiative Grant)

  • Anna Selmecki

Nebraska Established Program to Stimulate Competitive Research (EPSCoR First Award)

  • Anna Selmecki

Nebraska Department of Health and Human Services (LB506-2017-55)

  • Anna Selmecki

Creighton University (CURAS Faculty Faculty Research Fund)

  • Anna Selmecki

National Center for Research Resources (P20RR018788 sub award)

  • Anna Selmecki

National Institutes of Health (R15 AI090633)

  • Anja Forche

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Kevin J Verstrepen, VIB-KU Leuven Center for Microbiology, Belgium

Publication history

  1. Received: February 10, 2019
  2. Accepted: June 7, 2019
  3. Accepted Manuscript published: June 7, 2019 (version 1)

Copyright

© 2019, Todd et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 650
    Page views
  • 126
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

  1. Further reading

Further reading

    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Maria Azkanaz et al.
    Research Article
    1. Biochemistry and Chemical Biology
    2. Chromosomes and Gene Expression
    Tom Killelea et al.
    Research Article