Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells

  1. Ben F Brian
  2. Adrienne S Jolicoeur
  3. Candace R Guerrero
  4. Myra G Nunez
  5. Zoi E Sychev
  6. Siv A Hegre
  7. Pål Sætrom
  8. Nagy Habib
  9. Justin M Drake
  10. Kathryn L Schwertfeger
  11. Tanya S Freedman  Is a corresponding author
  1. University of Minnesota, United States
  2. Norwegian University of Science and Technology, Norway
  3. Imperial College London, United Kingdom

Abstract

The activity of Src-family kinases (SFKs), which phosphorylate immunoreceptor tyrosine-based activation motifs (ITAMs), is a critical factor regulating myeloid-cell activation. We reported previously that the SFK LynA is uniquely susceptible to rapid ubiquitin-mediated degradation in macrophages, functioning as a rheostat regulating signaling (Freedman et al., 2015). We now report the mechanism by which LynA is preferentially targeted for degradation and how cell specificity is built into the LynA rheostat. Using genetic, biochemical, and quantitative phosphopeptide analyses, we found that the E3 ubiquitin ligase c-Cbl preferentially targets LynA via a phosphorylated tyrosine (Y32) in its unique region. This distinct mode of c-Cbl recognition depresses steady-state expression of LynA in macrophages derived from mice. Mast cells, however, express little c-Cbl and have correspondingly high LynA. Upon activation, mast-cell LynA is not rapidly degraded, and SFK-mediated signaling is amplified relative to macrophages. Cell-specific c-Cbl expression thus builds cell specificity into the LynA checkpoint.

Data availability

All data generated or analysed during this study are included in the manuscript and supporting files. Source data files have been provided for graphs in Figure 1, Figure 1-figure supplement 1, Figure 2, Figure 3, Figure 3-figure supplement 2, Figure 4, Figure 4-figure supplement 1, Figure 4-figure supplement 5, Figure 5, Figure 6, Figure 6-figure supplement 1, Figure 7, Figure 8, and Figure 9.Data sets and calibration curves resulting from our targeted mass spectrometry studies have been deposited in Panorama Public (https://panoramaweb.org/project/Panorama%20Public/begin.view?)

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. Ben F Brian

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Adrienne S Jolicoeur

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Candace R Guerrero

    College of Biological Sciences Center for Mass Spectrometry and Proteomics, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Myra G Nunez

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. Zoi E Sychev

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Siv A Hegre

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  7. Pål Sætrom

    Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
    Competing interests
    The authors declare that no competing interests exist.
  8. Nagy Habib

    Department of Surgery and Cancer, Imperial College London, London, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  9. Justin M Drake

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Kathryn L Schwertfeger

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. Tanya S Freedman

    Department of Pharmacology, University of Minnesota, Minneapolis, United States
    For correspondence
    tfreedma@umn.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5168-5829

Funding

NIH Office of the Director (R01AR073966)

  • Tanya S Freedman

NIH Office of the Director (R03AI130978)

  • Tanya S Freedman

American Cancer Society (UMN IRG-58-001-55)

  • Tanya S Freedman

University of Minnesota (Grant-in-Aid #92286)

  • Tanya S Freedman

University of Minnesota (Research and Equipment Award NF-0315-02)

  • Tanya S Freedman

University of Minnesota (Center for Autoimmune Diseases Research Pilot Grant)

  • Tanya S Freedman

NIH Office of the Director (R01CA215052)

  • Kathryn L Schwertfeger

NIH Office of the Director (T32DA007097)

  • Ben F Brian

Research Council of Norway (230338)

  • Pål Sætrom

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Animal experimentation: All animal use complies with University of Minnesota (UMN) and National Institutes of Health (NIH) policy (Animal Welfare Assurance Number A3456-01). UMN is accredited by AAALAC, and all animal use was approved by the UMN Institutional Animal Care and Use Committee (IACUC, protocol # 1603-33559A). Animals are kept under supervision of a licensed doctor of veterinary medicine and supporting veterinary staff under strict NIH guidelines.

Copyright

© 2019, Brian et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,875
    views
  • 227
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Ben F Brian
  2. Adrienne S Jolicoeur
  3. Candace R Guerrero
  4. Myra G Nunez
  5. Zoi E Sychev
  6. Siv A Hegre
  7. Pål Sætrom
  8. Nagy Habib
  9. Justin M Drake
  10. Kathryn L Schwertfeger
  11. Tanya S Freedman
(2019)
Unique-region phosphorylation targets LynA for rapid degradation, tuning its expression and signaling in myeloid cells
eLife 8:e46043.
https://doi.org/10.7554/eLife.46043

Share this article

https://doi.org/10.7554/eLife.46043

Further reading

    1. Biochemistry and Chemical Biology
    2. Computational and Systems Biology
    A Sofia F Oliveira, Fiona L Kearns ... Adrian J Mulholland
    Short Report

    The spike protein is essential to the SARS-CoV-2 virus life cycle, facilitating virus entry and mediating viral-host membrane fusion. The spike contains a fatty acid (FA) binding site between every two neighbouring receptor-binding domains. This site is coupled to key regions in the protein, but the impact of glycans on these allosteric effects has not been investigated. Using dynamical nonequilibrium molecular dynamics (D-NEMD) simulations, we explore the allosteric effects of the FA site in the fully glycosylated spike of the SARS-CoV-2 ancestral variant. Our results identify the allosteric networks connecting the FA site to functionally important regions in the protein, including the receptor-binding motif, an antigenic supersite in the N-terminal domain, the fusion peptide region, and another allosteric site known to bind heme and biliverdin. The networks identified here highlight the complexity of the allosteric modulation in this protein and reveal a striking and unexpected link between different allosteric sites. Comparison of the FA site connections from D-NEMD in the glycosylated and non-glycosylated spike revealed that glycans do not qualitatively change the internal allosteric pathways but can facilitate the transmission of the structural changes within and between subunits.

    1. Biochemistry and Chemical Biology
    2. Genetics and Genomics
    Conor J Howard, Nathan S Abell ... Nathan B Lubock
    Research Article

    Deep Mutational Scanning (DMS) is an emerging method to systematically test the functional consequences of thousands of sequence changes to a protein target in a single experiment. Because of its utility in interpreting both human variant effects and protein structure-function relationships, it holds substantial promise to improve drug discovery and clinical development. However, applications in this domain require improved experimental and analytical methods. To address this need, we report novel DMS methods to precisely and quantitatively interrogate disease-relevant mechanisms, protein-ligand interactions, and assess predicted response to drug treatment. Using these methods, we performed a DMS of the melanocortin-4 receptor (MC4R), a G-protein-coupled receptor (GPCR) implicated in obesity and an active target of drug development efforts. We assessed the effects of >6600 single amino acid substitutions on MC4R’s function across 18 distinct experimental conditions, resulting in >20 million unique measurements. From this, we identified variants that have unique effects on MC4R-mediated Gαs- and Gαq-signaling pathways, which could be used to design drugs that selectively bias MC4R’s activity. We also identified pathogenic variants that are likely amenable to a corrector therapy. Finally, we functionally characterized structural relationships that distinguish the binding of peptide versus small molecule ligands, which could guide compound optimization. Collectively, these results demonstrate that DMS is a powerful method to empower drug discovery and development.