Generation of endogenous pH-sensitive EGF receptor and its application in high-throughput screening for proteins involved in clathrin-mediated endocytosis

  1. Mads Breum Larsen
  2. Mireia Perez Verdaguer
  3. Brigitte F Schmidt
  4. Marcel P Bruchez
  5. Simon C Watkins  Is a corresponding author
  6. Alexander Sorkin  Is a corresponding author
  1. University of Pittsburgh, United States
  2. Carnegie Mellon University, United States

Abstract

Previously we used gene-editing to label endogenous EGF receptor (EGFR) with GFP and demonstrate that picomolar concentrations of EGFR ligand drive signaling and endocytosis of EGFR in tumors in vivo (Pinilla-Macua et al, 2017). We now use gene-editing to insert a fluorogen activating protein (FAP) in the EGFR extracellular domain. Binding of the tandem dye pair MG-Bis-SA to FAP-EGFR provides a ratiometric pH-sensitive model with dual fluorescence excitation and a single far-red emission. The excitation ratio of fluorescence intensities was demonstrated to faithfully report the fraction of FAP-EGFR located in acidic endosomal/lysosomal compartments. Coupling native FAP-EGFR expression with the high method sensitivity has allowed development of a high-throughput assay to measure the rates of clathrin-mediated FAP-EGFR endocytosis stimulated with physiological EGF concentrations. The assay was utilized to screen a phosphatase siRNA library. These studies highlight the utility of endogenous pH-sensitive FAP-receptor chimeras in high-throughput analysis of endocytosis.

Data availability

All source data from library screening are provided in supplemental materials

Article and author information

Author details

  1. Mads Breum Larsen

    Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  2. Mireia Perez Verdaguer

    Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  3. Brigitte F Schmidt

    Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    No competing interests declared.
  4. Marcel P Bruchez

    Molecular Biosensor and Imaging Center, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    Marcel P Bruchez, founder of Sharp Edge Laboratories, a company that licensed the FAP technology from CMU. The author has no other competing interests to declare.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7370-4848
  5. Simon C Watkins

    Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    swatkins@pitt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4092-1552
  6. Alexander Sorkin

    Department of Cell Biology, University of Pittsburgh, Pittsburgh, United States
    For correspondence
    sorkin@pitt.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-4446-1920

Funding

National Institutes of Health (GM124186)

  • Simon C Watkins
  • Alexander Sorkin

National Institutes of Health (R01EB017268)

  • Marcel P Bruchez
  • Simon C Watkins

National Institutes of Health (R01GM114075)

  • Marcel P Bruchez
  • Simon C Watkins

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Larsen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,999
    views
  • 465
    downloads
  • 9
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Mads Breum Larsen
  2. Mireia Perez Verdaguer
  3. Brigitte F Schmidt
  4. Marcel P Bruchez
  5. Simon C Watkins
  6. Alexander Sorkin
(2019)
Generation of endogenous pH-sensitive EGF receptor and its application in high-throughput screening for proteins involved in clathrin-mediated endocytosis
eLife 8:e46135.
https://doi.org/10.7554/eLife.46135

Share this article

https://doi.org/10.7554/eLife.46135

Further reading

    1. Cell Biology
    2. Plant Biology
    Baihong Zhang, Shuqin Huang ... Wenli Chen
    Research Article

    Autophagy-related gene 6 (ATG6) plays a crucial role in plant immunity. Nonexpressor of pathogenesis-related genes 1 (NPR1) acts as a signaling hub of plant immunity. However, the relationship between ATG6 and NPR1 is unclear. Here, we find that ATG6 directly interacts with NPR1. ATG6 overexpression significantly increased nuclear accumulation of NPR1. Furthermore, we demonstrate that ATG6 increases NPR1 protein levels and improves its stability. Interestingly, ATG6 promotes the formation of SINCs (SA-induced NPR1 condensates)-like condensates. Additionally, ATG6 and NPR1 synergistically promote the expression of pathogenesis-related genes. Further results showed that silencing ATG6 in NPR1-GFP exacerbates Pst DC3000/avrRps4 infection, while double overexpression of ATG6 and NPR1 synergistically inhibits Pst DC3000/avrRps4 infection. In summary, our findings unveil an interplay of NPR1 with ATG6 and elucidate important molecular mechanisms for enhancing plant immunity.

    1. Cell Biology
    Chengfang Pan, Ying Liu ... Changlong Hu
    Research Article

    Prostaglandin E2 (PGE2) is an endogenous inhibitor of glucose-stimulated insulin secretion (GSIS) and plays an important role in pancreatic β-cell dysfunction in type 2 diabetes mellitus (T2DM). This study aimed to explore the underlying mechanism by which PGE2 inhibits GSIS. Our results showed that PGE2 inhibited Kv2.2 channels via increasing PKA activity in HEK293T cells overexpressed with Kv2.2 channels. Point mutation analysis demonstrated that S448 residue was responsible for the PKA-dependent modulation of Kv2.2. Furthermore, the inhibitory effect of PGE2 on Kv2.2 was blocked by EP2/4 receptor antagonists, while mimicked by EP2/4 receptor agonists. The immune fluorescence results showed that EP1–4 receptors are expressed in both mouse and human β-cells. In INS-1(832/13) β-cells, PGE2 inhibited voltage-gated potassium currents and electrical activity through EP2/4 receptors and Kv2.2 channels. Knockdown of Kcnb2 reduced the action potential firing frequency and alleviated the inhibition of PGE2 on GSIS in INS-1(832/13) β-cells. PGE2 impaired glucose tolerance in wild-type mice but did not alter glucose tolerance in Kcnb2 knockout mice. Knockout of Kcnb2 reduced electrical activity, GSIS and abrogated the inhibition of PGE2 on GSIS in mouse islets. In conclusion, we have demonstrated that PGE2 inhibits GSIS in pancreatic β-cells through the EP2/4-Kv2.2 signaling pathway. The findings highlight the significant role of Kv2.2 channels in the regulation of β-cell repetitive firing and insulin secretion, and contribute to the understanding of the molecular basis of β-cell dysfunction in diabetes.