Seasonal variation and etiologic inferences of childhood pneumonia and diarrhea mortality in India

  1. Daniel S Farrar
  2. Shally Awasthi
  3. Shaza A Fadel
  4. Rajesh Kumar
  5. Anju Sinha
  6. Sze Hang Fu
  7. Brian Wahl
  8. Shaun K Morris
  9. Prabhat Jha  Is a corresponding author
  1. St Michael's Hospital, Canada
  2. King George's Medical University, India
  3. Postgraduate Institute of Medical Education and Research, India
  4. Indian Council of Medical Research, India
  5. Johns Hopkins Bloomberg School of Public Health, United States
  6. Hospital for Sick Children, Canada

Abstract

Future control of pneumonia and diarrhea mortality in India requires understanding of their etiologies. We combined time series analysis of seasonality, climate-region, and clinical syndromes from 243,000 verbal autopsies in the nationally-representative Million Death Study. Pneumonia mortality at 1 month-14 years was greatest in January (Rate ratio (RR) 1.66, 99%CI 1.51-1.82; versus the April minimum). Higher RRs at 1-11 months suggested respiratory syncytial virus (RSV) etiology. India's humid subtropical region experienced a unique summer pneumonia mortality. Diarrhea mortality peaked in July (RR 1.66, 1.48-1.85) and January (RR 1.37, 1.23-1.48), while deaths with fever and bloody diarrhea (indicating enteroinvasive bacterial etiology) showed little seasonality. Combining mortality at ages 1-59-months in 2015 with prevalence surveys, we estimate 40,600 pneumonia deaths from Streptococcus pneumoniae, 20,700 from RSV, 12,600 from influenza, and 7,200 from Haemophilus influenzae type b and 24,700 diarrheal deaths from rotavirus. Careful mortality studies can elucidate etiologies and inform vaccine introduction.

Data availability

Data from the Million Death Study cannot be redistributed outside of the Centre for Global Health Research due to legal agreements with the Registrar General of India. Access to MDS data can be granted via data transfer agreements, upon request to the Office of the Registrar General, RK Puram, New Delhi, India (rgoffice.rgi@nic.in). The public census reports can be found at http://www.censusindia.gov.in/vital_statistics/SRS_Statistical_Report.html. Source data files have been provided for Figure 3, Figure 3 - figure supplement 1, Figure 3 - figure supplement 2, Figure 4, Figure 4 - figure supplement 1, Figure 6, Figure 6 - figure supplement 1, and Figure 8. Meta-analyses include only previously published data, and all data sources have been listed in supplemental reference lists within the article file.

Article and author information

Author details

  1. Daniel S Farrar

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7823-1912
  2. Shally Awasthi

    Department of Pediatrics, King George's Medical University, Lucknow, India
    Competing interests
    No competing interests declared.
  3. Shaza A Fadel

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2336-6254
  4. Rajesh Kumar

    School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
    Competing interests
    No competing interests declared.
  5. Anju Sinha

    Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, New Dehli, India
    Competing interests
    No competing interests declared.
  6. Sze Hang Fu

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4890-9339
  7. Brian Wahl

    International Vaccine Access Centre, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Shaun K Morris

    Centre for Global Child Health, Division of Infectious Diseases, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
  9. Prabhat Jha

    Center for Global Health Research, St Michael's Hospital, Toronto, Canada
    For correspondence
    jhap@smh.ca
    Competing interests
    Prabhat Jha, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7067-8341

Funding

Canadian Institutes of Health Research (FDN154277)

  • Prabhat Jha

Bill and Melinda Gates Foundation

  • Prabhat Jha

National Institutes of Health (R01TW05991-01)

  • Prabhat Jha

The funders had no role in study design, data collection, analysis or interpretation, preparation of the manuscript or the decision to submit the work for publication.

Reviewing Editor

  1. Mark Jit, London School of Hygiene & Tropical Medicine, and Public Health England, United Kingdom

Publication history

  1. Received: February 19, 2019
  2. Accepted: August 21, 2019
  3. Accepted Manuscript published: August 27, 2019 (version 1)
  4. Version of Record published: September 24, 2019 (version 2)

Copyright

© 2019, Farrar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,478
    Page views
  • 235
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel S Farrar
  2. Shally Awasthi
  3. Shaza A Fadel
  4. Rajesh Kumar
  5. Anju Sinha
  6. Sze Hang Fu
  7. Brian Wahl
  8. Shaun K Morris
  9. Prabhat Jha
(2019)
Seasonal variation and etiologic inferences of childhood pneumonia and diarrhea mortality in India
eLife 8:e46202.
https://doi.org/10.7554/eLife.46202

Further reading

    1. Epidemiology and Global Health
    2. Genetics and Genomics
    Peh Joo Ho, Iain BeeHuat Tan ... Jingmei Li
    Research Article

    Background: To evaluate the utility of polygenic risk scores (PRS) in identifying high-risk individuals, different publicly available PRS for breast (n=85), prostate (n=37), colorectal (n=22) and lung cancers (n=11) were examined in a prospective study of 21,694 Chinese adults.

    Methods: We constructed PRS using weights curated in the online PGS Catalog. PRS performance was evaluated by distribution, discrimination, predictive ability, and calibration. Hazard ratios (HR) and corresponding confidence intervals [CI] of the common cancers after 20 years of follow-up were estimated using Cox proportional hazard models for different levels of PRS.

    Results: A total of 495 breast, 308 prostate, 332 female-colorectal, 409 male-colorectal, 181 female-lung and 381 male-lung incident cancers were identified. The area under receiver operating characteristic curve for the best performing site-specific PRS were 0.61 (PGS000873, breast), 0.70 (PGS00662, prostate), 0.65 (PGS000055, female-colorectal), 0.60 (PGS000734, male-colorectal) and 0.56 (PGS000721, female-lung), and 0.58 (PGS000070, male-lung), respectively. Compared to the middle quintile, individuals in the highest cancer-specific PRS quintile were 64% more likely to develop cancers of the breast, prostate, and colorectal. For lung cancer, the lowest cancer-specific PRS quintile was associated with 28-34% decreased risk compared to the middle quintile. In contrast, the hazard ratios observed for quintiles 4 (female-lung: 0.95 [0.61-1.47]; male-lung: 1.14 [0.82-1.57]) and 5 (female-lung: 0.95 [0.61-1.47]) were not significantly different from that for the middle quintile.

    Conclusions: Site-specific PRSs can stratify the risk of developing breast, prostate, and colorectal cancers in this East Asian population. Appropriate correction factors may be required to improve calibration.

    Funding This work is supported by the National Research Foundation Singapore (NRF-NRFF2017-02), PRECISION Health Research, Singapore (PRECISE) and the Agency for Science, Technology and Research (A*STAR). WP Koh was supported by National Medical Research Council, Singapore (NMRC/CSA/0055/2013). CC Khor was supported by National Research Foundation Singapore (NRF-NRFI2018-01). Rajkumar Dorajoo received a grant from the Agency for Science, Technology and Research Career Development Award (A*STAR CDA - 202D8090), and from Ministry of Health Healthy Longevity Catalyst Award (HLCA20Jan-0022). The Singapore Chinese Health Study was supported by grants from the National Medical Research Council, Singapore (NMRC/CIRG/1456/2016) and the U.S. National Institutes of Health [NIH] (R01 CA144034 and UM1 CA182876).

    1. Epidemiology and Global Health
    2. Immunology and Inflammation
    Zaki A Sherif, Christian R Gomez ... RECOVER Mechanistic Pathway Task Force
    Review Article

    COVID-19, with persistent and new onset of symptoms such as fatigue, post-exertional malaise, and cognitive dysfunction that last for months and impact everyday functioning, is referred to as Long COVID under the general category of post-acute sequelae of SARS-CoV-2 infection (PASC). PASC is highly heterogenous and may be associated with multisystem tissue damage/dysfunction including acute encephalitis, cardiopulmonary syndromes, fibrosis, hepatobiliary damages, gastrointestinal dysregulation, myocardial infarction, neuromuscular syndromes, neuropsychiatric disorders, pulmonary damage, renal failure, stroke, and vascular endothelial dysregulation. A better understanding of the pathophysiologic mechanisms underlying PASC is essential to guide prevention and treatment. This review addresses potential mechanisms and hypotheses that connect SARS-CoV-2 infection to long-term health consequences. Comparisons between PASC and other virus-initiated chronic syndromes such as myalgic encephalomyelitis/chronic fatigue syndrome and postural orthostatic tachycardia syndrome will be addressed. Aligning symptoms with other chronic syndromes and identifying potentially regulated common underlining pathways may be necessary for understanding the true nature of PASC. The discussed contributors to PASC symptoms include sequelae from acute SARS-CoV-2 injury to one or more organs, persistent reservoirs of the replicating virus or its remnants in several tissues, re-activation of latent pathogens such as Epstein–Barr and herpes viruses in COVID-19 immune-dysregulated tissue environment, SARS-CoV-2 interactions with host microbiome/virome communities, clotting/coagulation dysregulation, dysfunctional brainstem/vagus nerve signaling, dysautonomia or autonomic dysfunction, ongoing activity of primed immune cells, and autoimmunity due to molecular mimicry between pathogen and host proteins. The individualized nature of PASC symptoms suggests that different therapeutic approaches may be required to best manage specific patients.