Seasonal variation and etiologic inferences of childhood pneumonia and diarrhea mortality in India

  1. Daniel S Farrar
  2. Shally Awasthi
  3. Shaza A Fadel
  4. Rajesh Kumar
  5. Anju Sinha
  6. Sze Hang Fu
  7. Brian Wahl
  8. Shaun K Morris
  9. Prabhat Jha  Is a corresponding author
  1. St Michael's Hospital, Canada
  2. King George's Medical University, India
  3. Postgraduate Institute of Medical Education and Research, India
  4. Indian Council of Medical Research, India
  5. Johns Hopkins Bloomberg School of Public Health, United States
  6. Hospital for Sick Children, Canada

Abstract

Future control of pneumonia and diarrhea mortality in India requires understanding of their etiologies. We combined time series analysis of seasonality, climate-region, and clinical syndromes from 243,000 verbal autopsies in the nationally-representative Million Death Study. Pneumonia mortality at 1 month-14 years was greatest in January (Rate ratio (RR) 1.66, 99%CI 1.51-1.82; versus the April minimum). Higher RRs at 1-11 months suggested respiratory syncytial virus (RSV) etiology. India's humid subtropical region experienced a unique summer pneumonia mortality. Diarrhea mortality peaked in July (RR 1.66, 1.48-1.85) and January (RR 1.37, 1.23-1.48), while deaths with fever and bloody diarrhea (indicating enteroinvasive bacterial etiology) showed little seasonality. Combining mortality at ages 1-59-months in 2015 with prevalence surveys, we estimate 40,600 pneumonia deaths from Streptococcus pneumoniae, 20,700 from RSV, 12,600 from influenza, and 7,200 from Haemophilus influenzae type b and 24,700 diarrheal deaths from rotavirus. Careful mortality studies can elucidate etiologies and inform vaccine introduction.

Data availability

Data from the Million Death Study cannot be redistributed outside of the Centre for Global Health Research due to legal agreements with the Registrar General of India. Access to MDS data can be granted via data transfer agreements, upon request to the Office of the Registrar General, RK Puram, New Delhi, India (rgoffice.rgi@nic.in). The public census reports can be found at http://www.censusindia.gov.in/vital_statistics/SRS_Statistical_Report.html. Source data files have been provided for Figure 3, Figure 3 - figure supplement 1, Figure 3 - figure supplement 2, Figure 4, Figure 4 - figure supplement 1, Figure 6, Figure 6 - figure supplement 1, and Figure 8. Meta-analyses include only previously published data, and all data sources have been listed in supplemental reference lists within the article file.

Article and author information

Author details

  1. Daniel S Farrar

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-7823-1912
  2. Shally Awasthi

    Department of Pediatrics, King George's Medical University, Lucknow, India
    Competing interests
    No competing interests declared.
  3. Shaza A Fadel

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-2336-6254
  4. Rajesh Kumar

    School of Public Health, Postgraduate Institute of Medical Education and Research, Chandigarh, India
    Competing interests
    No competing interests declared.
  5. Anju Sinha

    Division of Reproductive Biology, Maternal and Child Health, Indian Council of Medical Research, New Dehli, India
    Competing interests
    No competing interests declared.
  6. Sze Hang Fu

    Centre for Global Health Research, St Michael's Hospital, Toronto, Canada
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4890-9339
  7. Brian Wahl

    International Vaccine Access Centre, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
    Competing interests
    No competing interests declared.
  8. Shaun K Morris

    Centre for Global Child Health, Division of Infectious Diseases, Hospital for Sick Children, Toronto, Canada
    Competing interests
    No competing interests declared.
  9. Prabhat Jha

    Center for Global Health Research, St Michael's Hospital, Toronto, Canada
    For correspondence
    jhap@smh.ca
    Competing interests
    Prabhat Jha, Reviewing editor, eLife.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7067-8341

Funding

Canadian Institutes of Health Research (FDN154277)

  • Prabhat Jha

Bill and Melinda Gates Foundation

  • Prabhat Jha

National Institutes of Health (R01TW05991-01)

  • Prabhat Jha

The funders had no role in study design, data collection, analysis or interpretation, preparation of the manuscript or the decision to submit the work for publication.

Reviewing Editor

  1. Mark Jit, London School of Hygiene & Tropical Medicine, and Public Health England, United Kingdom

Version history

  1. Received: February 19, 2019
  2. Accepted: August 21, 2019
  3. Accepted Manuscript published: August 27, 2019 (version 1)
  4. Version of Record published: September 24, 2019 (version 2)

Copyright

© 2019, Farrar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,720
    views
  • 276
    downloads
  • 15
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Daniel S Farrar
  2. Shally Awasthi
  3. Shaza A Fadel
  4. Rajesh Kumar
  5. Anju Sinha
  6. Sze Hang Fu
  7. Brian Wahl
  8. Shaun K Morris
  9. Prabhat Jha
(2019)
Seasonal variation and etiologic inferences of childhood pneumonia and diarrhea mortality in India
eLife 8:e46202.
https://doi.org/10.7554/eLife.46202

Share this article

https://doi.org/10.7554/eLife.46202

Further reading

    1. Epidemiology and Global Health
    2. Microbiology and Infectious Disease
    Patrick E Brown, Sze Hang Fu ... Ab-C Study Collaborators
    Research Article

    Background: Few national-level studies have evaluated the impact of 'hybrid' immunity (vaccination coupled with recovery from infection) from the Omicron variants of SARS-CoV-2.

    Methods: From May 2020 to December 2022, we conducted serial assessments (each of ~4000-9000 adults) examining SARS-CoV-2 antibodies within a mostly representative Canadian cohort drawn from a national online polling platform. Adults, most of whom were vaccinated, reported viral test-confirmed infections and mailed self-collected dried blood spots to a central lab. Samples underwent highly sensitive and specific antibody assays to spike and nucleocapsid protein antigens, the latter triggered only by infection. We estimated cumulative SARS-CoV-2 incidence prior to the Omicron period and during the BA.1/1.1 and BA.2/5 waves. We assessed changes in antibody levels and in age-specific active immunity levels.

    Results: Spike levels were higher in infected than in uninfected adults, regardless of vaccination doses. Among adults vaccinated at least thrice and infected more than six months earlier, spike levels fell notably and continuously for the nine months post-vaccination. By contrast, among adults infected within six months, spike levels declined gradually. Declines were similar by sex, age group, and ethnicity. Recent vaccination attenuated declines in spike levels from older infections. In a convenience sample, spike antibody and cellular responses were correlated. Near the end of 2022, about 35% of adults above age 60 had their last vaccine dose more than six months ago, and about 25% remained uninfected. The cumulative incidence of SARS-CoV-2 infection rose from 13% (95% CI 11-14%) before omicron to 78% (76-80%) by December 2022, equating to 25 million infected adults cumulatively. However, the COVID-19 weekly death rate during the BA.2/5 waves was less than half of that during the BA.1/1.1 wave, implying a protective role for hybrid immunity.

    Conclusions: Strategies to maintain population-level hybrid immunity require up-to-date vaccination coverage, including among those recovering from infection. Population-based, self-collected dried blood spots are a practicable biological surveillance platform.

    Funding: Funding was provided by the COVID-19 Immunity Task Force, Canadian Institutes of Health Research, Pfizer Global Medical Grants, and St. Michael's Hospital Foundation. PJ and ACG are funded by the Canada Research Chairs Program.

    1. Computational and Systems Biology
    2. Epidemiology and Global Health
    Javier I Ottaviani, Virag Sagi-Kiss ... Gunter GC Kuhnle
    Research Article

    The chemical composition of foods is complex, variable, and dependent on many factors. This has a major impact on nutrition research as it foundationally affects our ability to adequately assess the actual intake of nutrients and other compounds. In spite of this, accurate data on nutrient intake are key for investigating the associations and causal relationships between intake, health, and disease risk at the service of developing evidence-based dietary guidance that enables improvements in population health. Here, we exemplify the importance of this challenge by investigating the impact of food content variability on nutrition research using three bioactives as model: flavan-3-ols, (–)-epicatechin, and nitrate. Our results show that common approaches aimed at addressing the high compositional variability of even the same foods impede the accurate assessment of nutrient intake generally. This suggests that the results of many nutrition studies using food composition data are potentially unreliable and carry greater limitations than commonly appreciated, consequently resulting in dietary recommendations with significant limitations and unreliable impact on public health. Thus, current challenges related to nutrient intake assessments need to be addressed and mitigated by the development of improved dietary assessment methods involving the use of nutritional biomarkers.