1. Chromosomes and Gene Expression
  2. Genetics and Genomics
Download icon

Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA

  1. Vincent Guacci
  2. Fiona Chatterjee
  3. Brett Robison
  4. Douglas E Koshland  Is a corresponding author
  1. University of California, Berkeley, United States
Research Article
  • Cited 5
  • Views 1,348
  • Annotations
Cite this article as: eLife 2019;8:e46347 doi: 10.7554/eLife.46347

Abstract

Cohesin mediates higher-order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesion by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.

Data availability

All data generated in this study are included in the manuscript.

Article and author information

Author details

  1. Vincent Guacci

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0281-713X
  2. Fiona Chatterjee

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brett Robison

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas E Koshland

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    koshland@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3742-6294

Funding

National Institutes of Health (1R35 GM-118189-01)

  • Douglas E Koshland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Prasad Jallepalli, Memorial Sloan Kettering Cancer Center, United States

Publication history

  1. Received: February 25, 2019
  2. Accepted: June 4, 2019
  3. Accepted Manuscript published: June 4, 2019 (version 1)
  4. Accepted Manuscript updated: June 4, 2019 (version 2)
  5. Version of Record published: June 17, 2019 (version 3)

Copyright

© 2019, Guacci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,348
    Page views
  • 294
    Downloads
  • 5
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Chromosomes and Gene Expression
    2. Genetics and Genomics
    Anthony S Findley et al.
    Research Article

    Genetic effects on gene expression and splicing can be modulated by cellular and environmental factors; yet interactions between genotypes, cell type and treatment have not been comprehensively studied together. We used an induced pluripotent stem cell system to study multiple cell types derived from the same individuals and exposed them to a large panel of treatments. Cellular responses involved different genes and pathways for gene expression and splicing, and were highly variable across contexts. For thousands of genes, we identified variable allelic expression across contexts and characterized different types of gene-environment interactions, many of which are associated with complex traits. Promoter functional and evolutionary features distinguished genes with elevated allelic imbalance mean and variance. On average half of the genes with dynamic regulatory interactions were missed by large eQTL mapping studies, indicating the importance of exploring multiple treatments to reveal previously unrecognized regulatory loci that may be important for disease.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Shou Liu et al.
    Research Article

    ARID1A is one of the most frequently mutated epigenetic regulators in a wide spectrum of cancers. Recent studies have shown that ARID1A deficiency induces global changes in the epigenetic landscape of enhancers and promoters. These broad and complex effects make it challenging to identify the driving mechanisms of ARID1A deficiency in promoting cancer progression. Here, we identified the anti-senescence effect of Arid1a deficiency in the progression of pancreatic intraepithelial neoplasia (PanIN) by profiling the transcriptome of individual PanINs in a mouse model. In a human cell line model, we found that ARID1A deficiency upregulates the expression of Aldehyde Dehydrogenase 1 Family Member A1 (ALDH1A1), which plays an essential role in attenuating the senescence induced by oncogenic KRAS through scavenging reactive oxygen species (ROS). As a subunit of the SWI/SNF chromatin remodeling complex, our ATAC sequencing data showed that ARID1A deficiency increases the accessibility of the enhancer region of ALDH1A1. This study provides the first evidence that ARID1A deficiency promotes pancreatic tumorigenesis by attenuating KRAS-induced senescence through the upregulation of ALDH1A1 expression.