Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA

  1. Vincent Guacci
  2. Fiona Chatterjee
  3. Brett Robison
  4. Douglas E Koshland  Is a corresponding author
  1. University of California, Berkeley, United States

Abstract

Cohesin mediates higher-order chromosome structure. Its biological activities require topological entrapment of DNA within a lumen(s) formed by cohesin subunits. The reversible dissociation of cohesin's Smc3p and Mcd1p subunits is postulated to form a regulated gate that allows DNA entry and exit into the lumen. We assessed gate-independent functions of this interface in yeast using a fusion protein that joins Smc3p to Mcd1p. We show that in vivo all the regulators of cohesin promote DNA binding of cohesion by mechanisms independent of opening this gate. Furthermore, we show that this interface has a gate-independent activity essential for cohesin to bind chromosomes. We propose this interface regulates DNA entrapment by controlling the opening and closing of one or more distal interfaces formed by cohesin subunits, likely by inducing a conformation change in cohesin. Furthermore, cohesin regulators modulate the interface to control both DNA entrapment and cohesin functions after DNA binding.

Data availability

All data generated in this study are included in the manuscript.

Article and author information

Author details

  1. Vincent Guacci

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0281-713X
  2. Fiona Chatterjee

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Brett Robison

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Douglas E Koshland

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    koshland@berkeley.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3742-6294

Funding

National Institutes of Health (1R35 GM-118189-01)

  • Douglas E Koshland

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Prasad Jallepalli, Memorial Sloan Kettering Cancer Center, United States

Publication history

  1. Received: February 25, 2019
  2. Accepted: June 4, 2019
  3. Accepted Manuscript published: June 4, 2019 (version 1)
  4. Accepted Manuscript updated: June 4, 2019 (version 2)
  5. Version of Record published: June 17, 2019 (version 3)

Copyright

© 2019, Guacci et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 1,555
    Page views
  • 308
    Downloads
  • 7
    Citations

Article citation count generated by polling the highest count across the following sources: PubMed Central, Crossref, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Vincent Guacci
  2. Fiona Chatterjee
  3. Brett Robison
  4. Douglas E Koshland
(2019)
Communication between distinct subunit interfaces of the cohesin complex promotes its topological entrapment of DNA
eLife 8:e46347.
https://doi.org/10.7554/eLife.46347

Further reading

    1. Chromosomes and Gene Expression
    Jiahui Zhang, Cheng-Zhong Zhang
    Insight

    In a departure from previous findings, new results suggest that free-floating pieces of DNA which carry additional copies of cancer-driving genes do not tend to cluster or have increased transcription.

    1. Chromosomes and Gene Expression
    Karin Purshouse, Elias T Friman ... Wendy A Bickmore
    Research Article

    Extrachromosomal DNA (ecDNA) are frequently observed in human cancers and are responsible for high levels of oncogene expression. In glioblastoma (GBM), ecDNA copy number correlates with poor prognosis. It is hypothesized that their copy number, size, and chromatin accessibility facilitate clustering of ecDNA and colocalization with transcriptional hubs, and that this underpins their elevated transcriptional activity. Here, we use super-resolution imaging and quantitative image analysis to evaluate GBM stem cells harbouring distinct ecDNA species (EGFR, CDK4, PDGFRA). We find no evidence that ecDNA routinely cluster with one another or closely interact with transcriptional hubs. Cells with EGFR-containing ecDNA have increased EGFR transcriptional output, but transcription per gene copy is similar in ecDNA compared to the endogenous chromosomal locus. These data suggest that it is the increased copy number of oncogene-harbouring ecDNA that primarily drives high levels of oncogene transcription, rather than specific interactions of ecDNA with each other or with high concentrations of the transcriptional machinery.