Persistent inflammation during anti-tuberculosis treatment with diabetes comorbidity

  1. Nathella Pavan Kumar
  2. Kiyoshi F Fukutani
  3. Basavaradhya S Shruthi
  4. Thabata Alves
  5. Paulo S Silveira-Mattos
  6. Michael S Rocha
  7. Kim West
  8. Mohan Natarajan
  9. Vijay Viswanathan
  10. Subash Babu
  11. Bruno B Andrade
  12. Hardy Kornfeld  Is a corresponding author
  1. National Institutes of Health, India
  2. Fundação José Silveira, Brazil
  3. Prof M Viswanathan Diabetes Research Center, India
  4. University of Massachusetts Medical School, United States
  5. National Institute for Research in Tuberculosis, India

Abstract

Diabetes mellitus (DM) increases risk for pulmonary tuberculosis (TB) and adverse treatment outcomes. Systemic hyper-inflammation is characteristic in people with TB and concurrent DM (TBDM) at baseline, but the impact of TB treatment on this pattern has not been determined. We measured 17 plasma cytokines and growth factors in longitudinal cohorts of Indian and Brazilian pulmonary TB patients with or without DM. Principal component analysis revealed virtually complete separation of TBDM from TB individuals in both cohorts at baseline, with hyper-inflammation in TBDM that continued through treatment completion at six months. By one year after treatment completion, there was substantial convergence of mediator levels between groups within the India cohort. Non-resolving systemic inflammation in TBDM comorbidity could reflect delayed lesion sterilization or non-resolving sterile inflammation. Either mechanism portends unfavorable long-term outcomes including risk for recurrent TB and for damaging immune pathology.

Data availability

All data generated or analyzed during this study are included in the manuscript and supporting files. Source data files have been provided for Figures 1 through 5.

Article and author information

Author details

  1. Nathella Pavan Kumar

    International Center for Excellence in Research, National Institutes of Health, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Kiyoshi F Fukutani

    Multinational Organization Network Sponsoring Translational and Epidemiological Research, Fundação José Silveira, Salvador, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Basavaradhya S Shruthi

    Prof M Viswanathan Diabetes Research Center, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  4. Thabata Alves

    Multinational Organization Network Sponsoring Translational and Epidemiological Research, Fundação José Silveira, Salvador, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Paulo S Silveira-Mattos

    Multinational Organization Network Sponsoring Translational and Epidemiological Research, Fundação José Silveira, Salvador, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Michael S Rocha

    Multinational Organization Network Sponsoring Translational and Epidemiological Research, Fundação José Silveira, Salvador, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Kim West

    University of Massachusetts Medical School, Worcester, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5744-0280
  8. Mohan Natarajan

    National Institute for Research in Tuberculosis, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  9. Vijay Viswanathan

    Prof M Viswanathan Diabetes Research Center, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  10. Subash Babu

    International Center for Excellence in Research, National Institutes of Health, Chennai, India
    Competing interests
    The authors declare that no competing interests exist.
  11. Bruno B Andrade

    Multinational Organization Network Sponsoring Translational and Epidemiological Research, Fundação José Silveira, Salvador, Brazil
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-6833-3811
  12. Hardy Kornfeld

    University of Massachusetts Medical School, Worcester, United States
    For correspondence
    Hardy.Kornfeld@umassmed.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-8970-7306

Funding

CRDF Global (USB1-31149-XX-13)

  • Hardy Kornfeld

CRDF Global (USB1-31149-XX-13)

  • Vijay Viswanathan

National Institutes of Health (U01AI115940)

  • Bruno B Andrade

Conselho Nacional de Desenvolvimento Científico e Tecnológico

  • Kiyoshi F Fukutani

Conselho Nacional de Desenvolvimento Científico e Tecnológico

  • Thabata Alves

Fundação de Amparo à Pesquisa do Estado da Bahia

  • Paulo S Silveira-Mattos

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

  • Kiyoshi F Fukutani

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

  • Bruno B Andrade

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Ethics

Human subjects: All research presented here was conducted according to the principles expressed in the Declaration of Helsinki. The Indian cohort study was approved by the Ethics Committee of the Prof. M. Viswanathan Diabetes Research Centre (ECR/51/INST/TN/2013/MVDRC/01). The Brazilian cohort study was approved by the Ethics Committee of the Maternidade Climério de Oliveira, Federal University of Bahia (CAAE: 0115.0.054.000-09). Written informed consent was obtained from all participants at both sites.

Copyright

© 2019, Kumar et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,598
    views
  • 383
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Nathella Pavan Kumar
  2. Kiyoshi F Fukutani
  3. Basavaradhya S Shruthi
  4. Thabata Alves
  5. Paulo S Silveira-Mattos
  6. Michael S Rocha
  7. Kim West
  8. Mohan Natarajan
  9. Vijay Viswanathan
  10. Subash Babu
  11. Bruno B Andrade
  12. Hardy Kornfeld
(2019)
Persistent inflammation during anti-tuberculosis treatment with diabetes comorbidity
eLife 8:e46477.
https://doi.org/10.7554/eLife.46477

Share this article

https://doi.org/10.7554/eLife.46477

Further reading

    1. Immunology and Inflammation
    Josep Garnica, Patricia Sole ... Pere Santamaria
    Research Article

    Chronic antigenic stimulation can trigger the formation of interleukin 10 (IL-10)-producing T-regulatory type 1 (TR1) cells in vivo. We have recently shown that murine T-follicular helper (TFH) cells are precursors of TR1 cells and that the TFH-to-TR1 cell transdifferentiation process is characterized by the progressive loss and acquisition of opposing transcription factor gene expression programs that evolve through at least one transitional cell stage. Here, we use a broad range of bulk and single-cell transcriptional and epigenetic tools to investigate the epigenetic underpinnings of this process. At the single-cell level, the TFH-to-TR1 cell transition is accompanied by both, downregulation of TFH cell-specific gene expression due to loss of chromatin accessibility, and upregulation of TR1 cell-specific genes linked to chromatin regions that remain accessible throughout the transdifferentiation process, with minimal generation of new open chromatin regions. By interrogating the epigenetic status of accessible TR1 genes on purified TFH and conventional T-cells, we find that most of these genes, including Il10, are already poised for expression at the TFH cell stage. Whereas these genes are closed and hypermethylated in Tconv cells, they are accessible, hypomethylated, and enriched for H3K27ac-marked and hypomethylated active enhancers in TFH cells. These enhancers are enriched for binding sites for the TFH and TR1-associated transcription factors TOX-2, IRF4, and c-MAF. Together, these data suggest that the TR1 gene expression program is genetically imprinted at the TFH cell stage.

    1. Genetics and Genomics
    2. Immunology and Inflammation
    Stephanie Guillet, Tomi Lazarov ... Frédéric Geissmann
    Research Article

    Systemic lupus erythematosus (SLE) is an autoimmune disease, the pathophysiology and genetic basis of which are incompletely understood. Using a forward genetic screen in multiplex families with SLE, we identified an association between SLE and compound heterozygous deleterious variants in the non-receptor tyrosine kinases (NRTKs) ACK1 and BRK. Experimental blockade of ACK1 or BRK increased circulating autoantibodies in vivo in mice and exacerbated glomerular IgG deposits in an SLE mouse model. Mechanistically, NRTKs regulate activation, migration, and proliferation of immune cells. We found that the patients’ ACK1 and BRK variants impair efferocytosis, the MERTK-mediated anti-inflammatory response to apoptotic cells, in human induced pluripotent stem cell (hiPSC)-derived macrophages, which may contribute to SLE pathogenesis. Overall, our data suggest that ACK1 and BRK deficiencies are associated with human SLE and impair efferocytosis in macrophages.