Metabolic constraints drive self-organization of specialized cell groups

  1. Sriram Varahan
  2. Adhish Walvekar
  3. Vaibhhav Sinha
  4. Sandeep Krishna
  5. Sunil Laxman  Is a corresponding author
  1. InStem - Institute for Stem Cell Science and Regenerative Medicine, India
  2. National Centre for Biological Sciences­‐Tata Institute of Fundamental Research, India

Abstract

How phenotypically distinct states in isogenic cell populations appear and stably co-exist remains unresolved. We find that within a mature, clonal yeast colony developing in low glucose, cells arrange into metabolically disparate cell groups. Using this system, we model and experimentally identify metabolic constraints sufficient to drive such self-assembly. Beginning in a uniformly gluconeogenic state, cells exhibiting a contrary, high pentose phosphate pathway activity state, spontaneously appear and proliferate, in a spatially constrained manner. Gluconeogenic cells in the colony produce and provide a resource, which we identify as trehalose. Above threshold concentrations of external trehalose, cells switch to the new metabolic state and proliferate. A self-organized system establishes, where cells in this new state are sustained by trehalose consumption, which thereby restrains other cells in the trehalose producing, gluconeogenic state. Our work suggests simple physico-chemical principles that determine how isogenic cells spontaneously self-organize into structured assemblies in complimentary, specialized states.

Data availability

All data in this study are generated by computational simulations. All model parameters and equations are included in the manuscript and source code is included with this submission.

Article and author information

Author details

  1. Sriram Varahan

    InStem - Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  2. Adhish Walvekar

    InStem - Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-7344-7653
  3. Vaibhhav Sinha

    Simons Centre for the Study of Living Machines, National Centre for Biological Sciences­‐Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5169-5485
  4. Sandeep Krishna

    Simons Centre for the Study of Living Machines, National Centre for Biological Sciences­‐Tata Institute of Fundamental Research, Bangalore, India
    Competing interests
    The authors declare that no competing interests exist.
  5. Sunil Laxman

    InStem - Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
    For correspondence
    sunil.laxman@gmail.com
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0861-5080

Funding

Wellcome Trust - DBT India Alliance (IA/I/14/2/501523)

  • Sunil Laxman

Simons Foundation

  • Vaibhhav Sinha
  • Sandeep Krishna

Wellcome Trust - DBT India Alliance (IA/E/16/1/502996)

  • Sriram Varahan

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, Varahan et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,631
    views
  • 637
    downloads
  • 44
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Sriram Varahan
  2. Adhish Walvekar
  3. Vaibhhav Sinha
  4. Sandeep Krishna
  5. Sunil Laxman
(2019)
Metabolic constraints drive self-organization of specialized cell groups
eLife 8:e46735.
https://doi.org/10.7554/eLife.46735

Share this article

https://doi.org/10.7554/eLife.46735

Further reading

    1. Cell Biology
    Li Sun, Xuejin Chen ... Quan-wen Jin
    Research Article

    Mitotic anaphase onset is a key cellular process tightly regulated by multiple kinases. The involvement of mitogen-activated protein kinases (MAPKs) in this process has been established in Xenopus egg extracts. However, the detailed regulatory cascade remains elusive, and it is also unknown whether the MAPK-dependent mitotic regulation is evolutionarily conserved in the single-cell eukaryotic organisms such as fission yeast (Schizosaccharomyces pombe). Here, we show that two MAPKs in S. pombe indeed act in concert to restrain anaphase-promoting complex/cyclosome (APC/C) activity upon activation of the spindle assembly checkpoint (SAC). One MAPK, Pmk1, binds to and phosphorylates Slp1Cdc20, the co-activator of APC/C. Phosphorylation of Slp1Cdc20 by Pmk1, but not by Cdk1, promotes its subsequent ubiquitylation and degradation. Intriguingly, Pmk1-mediated phosphorylation event is also required to sustain SAC under environmental stress. Thus, our study establishes a new underlying molecular mechanism of negative regulation of APC/C by MAPK upon stress stimuli, and provides a previously unappreciated framework for regulation of anaphase entry in eukaryotic cells.