Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis

  1. Alexander JR Booth
  2. Zuojun Yue
  3. John K Eykelenboom
  4. Tom Stiff
  5. GW Gant Luxton
  6. Helfrid Hochegger
  7. Tomoyuki Tanaka  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. University of Sussex, United Kingdom
  3. University of Minnesota, United States

Abstract

To ensure proper segregation during mitosis, chromosomes must be efficiently captured by spindle microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome interaction with the spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced soon after nuclear envelope breakdown (NEBD) in human cells. The CSV reduction occurs primarily independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains on nuclear envelope remnants soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates timely chromosome congression and correct segregation. Thus we find a novel mechanism that positions chromosomes in early mitosis to ensure efficient and correct chromosome-spindle interactions.

Data availability

A source data file has been provided for each figure, and it contains the source data at individual time points in individual cells where relevant.

Article and author information

Author details

  1. Alexander JR Booth

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3320-7919
  2. Zuojun Yue

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. John K Eykelenboom

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Tom Stiff

    Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. GW Gant Luxton

    College of Biological Sciences, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6180-8906
  6. Helfrid Hochegger

    Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Tomoyuki Tanaka

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    t.tanaka@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9886-5947

Funding

Wellcome (096535/Z/11/Z)

  • Tomoyuki Tanaka

Wellcome (097945/Z/11/Z)

  • Tomoyuki Tanaka

Wellcome (208401/Z/17/Z)

  • Tomoyuki Tanaka

Cancer Research UK (C28206/A114499)

  • Helfrid Hochegger

Medical Research Council (MR/K015869/1)

  • Tomoyuki Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Version history

  1. Received: March 15, 2019
  2. Accepted: July 1, 2019
  3. Accepted Manuscript published: July 2, 2019 (version 1)
  4. Accepted Manuscript updated: July 3, 2019 (version 2)
  5. Version of Record published: July 16, 2019 (version 3)

Copyright

© 2019, Booth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 2,982
    Page views
  • 472
    Downloads
  • 26
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander JR Booth
  2. Zuojun Yue
  3. John K Eykelenboom
  4. Tom Stiff
  5. GW Gant Luxton
  6. Helfrid Hochegger
  7. Tomoyuki Tanaka
(2019)
Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis
eLife 8:e46902.
https://doi.org/10.7554/eLife.46902

Share this article

https://doi.org/10.7554/eLife.46902

Further reading

    1. Cell Biology
    Kazuki Hanaoka, Kensuke Nishikawa ... Kouichi Funato
    Research Article

    Membrane contact sites (MCSs) are junctures that perform important roles including coordinating lipid metabolism. Previous studies have indicated that vacuolar fission/fusion processes are coupled with modifications in the membrane lipid composition. However, it has been still unclear whether MCS-mediated lipid metabolism controls the vacuolar morphology. Here, we report that deletion of tricalbins (Tcb1, Tcb2, and Tcb3), tethering proteins at endoplasmic reticulum (ER)–plasma membrane (PM) and ER–Golgi contact sites, alters fusion/fission dynamics and causes vacuolar fragmentation in the yeast Saccharomyces cerevisiae. In addition, we show that the sphingolipid precursor phytosphingosine (PHS) accumulates in tricalbin-deleted cells, triggering the vacuolar division. Detachment of the nucleus–vacuole junction (NVJ), an important contact site between the vacuole and the perinuclear ER, restored vacuolar morphology in both cells subjected to high exogenous PHS and Tcb3-deleted cells, supporting that PHS transport across the NVJ induces vacuole division. Thus, our results suggest that vacuolar morphology is maintained by MCSs through the metabolism of sphingolipids.

    1. Cell Biology
    2. Chromosomes and Gene Expression
    Monica Salinas-Pena, Elena Rebollo, Albert Jordan
    Research Article

    Histone H1 participates in chromatin condensation and regulates nuclear processes. Human somatic cells may contain up to seven histone H1 variants, although their functional heterogeneity is not fully understood. Here, we have profiled the differential nuclear distribution of the somatic H1 repertoire in human cells through imaging techniques including super-resolution microscopy. H1 variants exhibit characteristic distribution patterns in both interphase and mitosis. H1.2, H1.3, and H1.5 are universally enriched at the nuclear periphery in all cell lines analyzed and co-localize with compacted DNA. H1.0 shows a less pronounced peripheral localization, with apparent variability among different cell lines. On the other hand, H1.4 and H1X are distributed throughout the nucleus, being H1X universally enriched in high-GC regions and abundant in the nucleoli. Interestingly, H1.4 and H1.0 show a more peripheral distribution in cell lines lacking H1.3 and H1.5. The differential distribution patterns of H1 suggest specific functionalities in organizing lamina-associated domains or nucleolar activity, which is further supported by a distinct response of H1X or phosphorylated H1.4 to the inhibition of ribosomal DNA transcription. Moreover, H1 variants depletion affects chromatin structure in a variant-specific manner. Concretely, H1.2 knock-down, either alone or combined, triggers a global chromatin decompaction. Overall, imaging has allowed us to distinguish H1 variants distribution beyond the segregation in two groups denoted by previous ChIP-Seq determinations. Our results support H1 variants heterogeneity and suggest that variant-specific functionality can be shared between different cell types.