Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis

  1. Alexander JR Booth
  2. Zuojun Yue
  3. John K Eykelenboom
  4. Tom Stiff
  5. GW Gant Luxton
  6. Helfrid Hochegger
  7. Tomoyuki U Tanaka  Is a corresponding author
  1. University of Dundee, United Kingdom
  2. University of Sussex, United Kingdom
  3. University of Minnesota, United States

Abstract

To ensure proper segregation during mitosis, chromosomes must be efficiently captured by spindle microtubules and subsequently aligned on the mitotic spindle. The efficacy of chromosome interaction with the spindle can be influenced by how widely chromosomes are scattered in space. Here, we quantify chromosome-scattering volume (CSV) and find that it is reduced soon after nuclear envelope breakdown (NEBD) in human cells. The CSV reduction occurs primarily independently of microtubules and is therefore not an outcome of interactions between chromosomes and the spindle. We find that, prior to NEBD, an acto-myosin network is assembled in a LINC complex-dependent manner on the cytoplasmic surface of the nuclear envelope. This acto-myosin network remains on nuclear envelope remnants soon after NEBD, and its myosin-II-mediated contraction reduces CSV and facilitates timely chromosome congression and correct segregation. Thus we find a novel mechanism that positions chromosomes in early mitosis to ensure efficient and correct chromosome-spindle interactions.

Data availability

A source data file has been provided for each figure, and it contains the source data at individual time points in individual cells where relevant.

Article and author information

Author details

  1. Alexander JR Booth

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-3320-7919
  2. Zuojun Yue

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. John K Eykelenboom

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Tom Stiff

    Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. GW Gant Luxton

    College of Biological Sciences, University of Minnesota, Minneapolis, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-6180-8906
  6. Helfrid Hochegger

    Genome Damage and Stability Centre, University of Sussex, Brighton, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  7. Tomoyuki U Tanaka

    School of Life Sciences, University of Dundee, Dundee, United Kingdom
    For correspondence
    t.tanaka@dundee.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9886-5947

Funding

Wellcome (096535/Z/11/Z)

  • Tomoyuki U Tanaka

Wellcome (097945/Z/11/Z)

  • Tomoyuki U Tanaka

Wellcome (208401/Z/17/Z)

  • Tomoyuki U Tanaka

Cancer Research UK (C28206/A114499)

  • Helfrid Hochegger

Medical Research Council (MR/K015869/1)

  • Tomoyuki U Tanaka

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Silke Hauf, Virginia Tech, United States

Version history

  1. Received: March 15, 2019
  2. Accepted: July 1, 2019
  3. Accepted Manuscript published: July 2, 2019 (version 1)
  4. Accepted Manuscript updated: July 3, 2019 (version 2)
  5. Version of Record published: July 16, 2019 (version 3)

Copyright

© 2019, Booth et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,043
    views
  • 481
    downloads
  • 34
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alexander JR Booth
  2. Zuojun Yue
  3. John K Eykelenboom
  4. Tom Stiff
  5. GW Gant Luxton
  6. Helfrid Hochegger
  7. Tomoyuki U Tanaka
(2019)
Contractile acto-myosin network on nuclear envelope remnants positions human chromosomes for mitosis
eLife 8:e46902.
https://doi.org/10.7554/eLife.46902

Share this article

https://doi.org/10.7554/eLife.46902

Further reading

    1. Cell Biology
    Elizabeth A Beath, Cynthia Bailey ... Francis J McNally
    Research Article

    Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.

    1. Cell Biology
    Joanne Tung, Lei Huang ... Adriana Ordonez
    Research Article

    Activating transcription factor 6 (ATF6) is one of three endoplasmic reticulum (ER) transmembrane stress sensors that mediate the unfolded protein response (UPR). Despite its crucial role in long-term ER stress adaptation, regulation of ATF6 alpha (α) signalling remains poorly understood, possibly because its activation involves ER-to-Golgi and nuclear trafficking. Here, we generated an ATF6α/Inositol-requiring kinase 1 (IRE1) dual UPR reporter CHO-K1 cell line and performed an unbiased genome-wide CRISPR/Cas9 mutagenesis screen to systematically profile genetic factors that specifically contribute to ATF6α signalling in the presence and absence of ER stress. The screen identified both anticipated and new candidate genes that regulate ATF6α activation. Among these, calreticulin (CRT), a key ER luminal chaperone, selectively repressed ATF6α signalling: Cells lacking CRT constitutively activated a BiP::sfGFP ATF6α-dependent reporter, had higher BiP levels and an increased rate of trafficking and processing of ATF6α. Purified CRT interacted with the luminal domain of ATF6α in vitro and the two proteins co-immunoprecipitated from cell lysates. CRT depletion exposed a negative feedback loop implicating ATF6α in repressing IRE1 activity basally and overexpression of CRT reversed this repression. Our findings indicate that CRT, beyond its known role as a chaperone, also serves as an ER repressor of ATF6α to selectively regulate one arm of the UPR.