1. Plant Biology
Download icon

Dynamic ubiquitination determines transcriptional activity of the plant immune coactivator NPR1

  1. Michael J Skelly
  2. James J Furniss
  3. Heather L Grey
  4. Ka-Wing Wong
  5. Steven H Spoel  Is a corresponding author
  1. University of Edinburgh, United Kingdom
Research Article
  • Cited 0
  • Views 659
  • Annotations
Cite this article as: eLife 2019;8:e47005 doi: 10.7554/eLife.47005

Abstract

Activation of systemic acquired resistance in plants is associated with transcriptome reprogramming induced by the unstable coactivator NPR1. Immune-induced ubiquitination and proteasomal degradation of NPR1 are thought to facilitate continuous delivery of active NPR1 to target promoters, thereby maximising gene expression. Because of this potentially costly sacrificial process, we investigated if ubiquitination of NPR1 plays transcriptional roles prior to its proteasomal turnover. Here we show ubiquitination of NPR1 is a progressive event in which initial modification by a Cullin-RING E3 ligase promotes its chromatin association and expression of target genes. Only when polyubiquitination of NPR1 is enhanced by the E4 ligase, UBE4, it is targeted for proteasomal degradation. Conversely, ubiquitin ligase activities are opposed by UBP6/7, two proteasome-associated deubiquitinases that enhance NPR1 longevity. Thus, immune-induced transcriptome reprogramming requires sequential actions of E3 and E4 ligases balanced by opposing deubiquitinases that fine-tune activity of NPR1 without strict requirement for its sacrificial turnover.

Article and author information

Author details

  1. Michael J Skelly

    Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-9024-0037
  2. James J Furniss

    Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  3. Heather L Grey

    Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  4. Ka-Wing Wong

    Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    Competing interests
    The authors declare that no competing interests exist.
  5. Steven H Spoel

    Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
    For correspondence
    steven.spoel@ed.ac.uk
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4340-7591

Funding

Royal Society (UF090321)

  • Steven H Spoel

Biotechnology and Biological Sciences Research Council (BB/L006219/1)

  • Steven H Spoel

H2020 European Research Council (678511)

  • Steven H Spoel

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Jian-Min Zhou, Chinese Academy of Sciences, China

Publication history

  1. Received: March 19, 2019
  2. Accepted: October 5, 2019
  3. Accepted Manuscript published: October 7, 2019 (version 1)

Copyright

© 2019, Skelly et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 659
    Page views
  • 176
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)