An evolutionary recent IFN-IL-6-CEBP axis is linked to monocyte expansion and tuberculosis severity in humans

Abstract

Monocyte counts are increased during human tuberculosis (TB) but it has not been determined whether Mycobacterium tuberculosis (Mtb) directly regulates myeloid commitment. We demonstrated that exposure to Mtb directs primary human CD34+ cells to differentiate into monocytes/macrophages. In vitro myeloid conversion did not require type I or type II IFN signaling. In contrast, Mtb enhanced IL-6 responses by CD34+ cell cultures and IL-6R neutralization inhibited myeloid differentiation and decreased mycobacterial growth in vitro. Integrated systems biology analysis of transcriptomic, proteomic and genomic data of large data sets of healthy controls and TB patients established the existence of a myeloid IL-6/IL6R/CEBP gene module associated with disease severity. Furthermore, genetic and functional analysis revealed the IL6/IL6R/CEBP gene module has undergone recent evolutionary selection, including Neanderthal introgression and human pathogen adaptation, connected to systemic monocyte counts. These results suggest Mtb co-opts an evolutionary recent IFN-IL6-CEBP feed-forward loop, increasing myeloid differentiation linked to severe TB in humans.

Data availability

Sequencing data have been deposited in GEO under accession code GSE129270.

The following previously published data sets were used

Article and author information

Author details

  1. Murilo Delgobo

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  2. Daniel A G B Mendes

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  3. Edgar Kozlova

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  4. Edroaldo Lummertz Rocha

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  5. Gabriela F Rodrigues-Luiz

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  6. Lucas Mascarin

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  7. Greicy Dias

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  8. Daniel O Patrício

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  9. Tim Dierckx

    Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
    Competing interests
    The authors declare that no competing interests exist.
  10. Maira A Bicca

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  11. Gaelle Bretton

    Laboratory of Molecular Immunology, The Rockefeller University, New York, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Yonne Karoline Tenório de Menezes

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  13. Márick R Starick

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  14. Darcita Rovaris

    Tuberculosis Unit, Laboratório Central do Estado de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  15. Joanita Del Moral

    Serviço de Hematologia, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  16. Daniel S Mansur

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, Brazil
    Competing interests
    The authors declare that no competing interests exist.
  17. Johan Van Weyenbergh

    Department of Microbiology, Immunology and Transplantation, University of Leuven, Leuven, Belgium
    For correspondence
    j.vw@live.be
    Competing interests
    The authors declare that no competing interests exist.
  18. André Báfica

    Laboratório de Imunobiologia, Departmento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
    For correspondence
    andre.bafica@ufsc.br
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-5148-600X

Funding

Howard Hughes Medical Institute (Early Career Scientist 55007412)

  • André Báfica

CAPES (23038.010048/2013-27)

  • Daniel S Mansur

FWO (G0D6817N)

  • Johan Van Weyenbergh

National Institutes of Health (Global Research Initiative Program TW008276)

  • André Báfica

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Bavesh D Kana, University of the Witwatersrand, South Africa

Ethics

Human subjects: This study was approved by the institutional review boards of Universidade Federal de Santa Catarina and The University Hospital Prof. Polydoro Ernani de São Thiago (IRB# 89894417.8.0000.0121). Informed consent was obtained from all subjects.

Version history

  1. Received: March 20, 2019
  2. Accepted: October 8, 2019
  3. Accepted Manuscript published: October 22, 2019 (version 1)
  4. Version of Record published: October 29, 2019 (version 2)

Copyright

© 2019, Delgobo et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 4,024
    views
  • 456
    downloads
  • 26
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Murilo Delgobo
  2. Daniel A G B Mendes
  3. Edgar Kozlova
  4. Edroaldo Lummertz Rocha
  5. Gabriela F Rodrigues-Luiz
  6. Lucas Mascarin
  7. Greicy Dias
  8. Daniel O Patrício
  9. Tim Dierckx
  10. Maira A Bicca
  11. Gaelle Bretton
  12. Yonne Karoline Tenório de Menezes
  13. Márick R Starick
  14. Darcita Rovaris
  15. Joanita Del Moral
  16. Daniel S Mansur
  17. Johan Van Weyenbergh
  18. André Báfica
(2019)
An evolutionary recent IFN-IL-6-CEBP axis is linked to monocyte expansion and tuberculosis severity in humans
eLife 8:e47013.
https://doi.org/10.7554/eLife.47013

Share this article

https://doi.org/10.7554/eLife.47013

Further reading

    1. Cell Biology
    2. Computational and Systems Biology
    N Suhas Jagannathan, Javier Yu Peng Koh ... Lisa Tucker-Kellogg
    Research Article

    Bats have unique characteristics compared to other mammals, including increased longevity and higher resistance to cancer and infectious disease. While previous studies have analyzed the metabolic requirements for flight, it is still unclear how bat metabolism supports these unique features, and no study has integrated metabolomics, transcriptomics, and proteomics to characterize bat metabolism. In this work, we performed a multi-omics data analysis using a computational model of metabolic fluxes to identify fundamental differences in central metabolism between primary lung fibroblast cell lines from the black flying fox fruit bat (Pteropus alecto) and human. Bat cells showed higher expression levels of Complex I components of electron transport chain (ETC), but, remarkably, a lower rate of oxygen consumption. Computational modeling interpreted these results as indicating that Complex II activity may be low or reversed, similar to an ischemic state. An ischemic-like state of bats was also supported by decreased levels of central metabolites and increased ratios of succinate to fumarate in bat cells. Ischemic states tend to produce reactive oxygen species (ROS), which would be incompatible with the longevity of bats. However, bat cells had higher antioxidant reservoirs (higher total glutathione and higher ratio of NADPH to NADP) despite higher mitochondrial ROS levels. In addition, bat cells were more resistant to glucose deprivation and had increased resistance to ferroptosis, one of the characteristics of which is oxidative stress. Thus, our studies revealed distinct differences in the ETC regulation and metabolic stress responses between human and bat cells.

    1. Computational and Systems Biology
    2. Neuroscience
    Sara Ibañez, Nilapratim Sengupta ... Christina M Weaver
    Research Article

    Normal aging leads to myelin alterations in the rhesus monkey dorsolateral prefrontal cortex (dlPFC), which are positively correlated with degree of cognitive impairment. It is hypothesized that remyelination with shorter and thinner myelin sheaths partially compensates for myelin degradation, but computational modeling has not yet explored these two phenomena together systematically. Here, we used a two-pronged modeling approach to determine how age-related myelin changes affect a core cognitive function: spatial working memory. First, we built a multicompartment pyramidal neuron model fit to monkey dlPFC empirical data, with an axon including myelinated segments having paranodes, juxtaparanodes, internodes, and tight junctions. This model was used to quantify conduction velocity (CV) changes and action potential (AP) failures after demyelination and subsequent remyelination. Next, we incorporated the single neuron results into a spiking neural network model of working memory. While complete remyelination nearly recovered axonal transmission and network function to unperturbed levels, our models predict that biologically plausible levels of myelin dystrophy, if uncompensated by other factors, can account for substantial working memory impairment with aging. The present computational study unites empirical data from ultrastructure up to behavior during normal aging, and has broader implications for many demyelinating conditions, such as multiple sclerosis or schizophrenia.