Abstract

RNA Polymerase II (Pol II) and transcription factors form concentrated hubs in cells via multivalent protein-protein interactions, often mediated by proteins with intrinsically disordered regions. During Herpes Simplex Virus infection, viral replication compartments (RCs) efficiently enrich host Pol II into membraneless domains, reminiscent of liquid-liquid phase-separation. Despite sharing several properties with phase-separated condensates, we show that RCs operate via a distinct mechanism wherein unrestricted nonspecific protein-DNA interactions efficiently outcompete host chromatin, profoundly influencing the way DNA binding proteins explore RCs. We find that the viral genome remains largely nucleosome-free, and this increase in accessibility allows Pol II and other DNA-binding proteins to repeatedly visit nearby DNA binding sites. This anisotropic behavior creates local accumulations of protein factors despite their unrestricted diffusion across RC boundaries. Our results reveal underappreciated consequences of nonspecific DNA binding in shaping gene activity, and suggest additional roles for chromatin in modulating nuclear function and organization.

Data availability

The GEO accession number for the ATAC-seq data is: GSE117335. The SPT trajectory data are available via Zenodo at DOI:10.5281/zenodo.1313872. The software used to generate these data is available at https://gitlab.com/tjian-darzacq-lab.

The following data sets were generated
The following previously published data sets were used

Article and author information

Author details

  1. David Trombley McSwiggen

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-3844-7433
  2. Anders S Hansen

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  3. Sheila S Teves

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-1220-2414
  4. Hervé Marie-Nelly

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  5. Yvonne Hao

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  6. Alec Basil Heckert

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  7. Kayla K Umemoto

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  8. Claire Dugast-Darzacq

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    Competing interests
    No competing interests declared.
  9. Robert Tjian

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    jmlim@berkeley.edu
    Competing interests
    Robert Tjian, is one of the three founding funders of eLife, and a member of eLife's Board of Directors.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-0539-8217
  10. Xavier Darzacq

    Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
    For correspondence
    darzacq@berkeley.edu
    Competing interests
    No competing interests declared.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2537-8395

Funding

National Institutes of Health (UO1- 497 EB021236)

  • David Trombley McSwiggen
  • Anders S Hansen
  • Yvonne Hao
  • Alec Basil Heckert
  • Kayla K Umemoto
  • Claire Dugast-Darzacq
  • Xavier Darzacq

National Institutes of Health (U54-DK107980)

  • David Trombley McSwiggen
  • Anders S Hansen
  • Yvonne Hao
  • Alec Basil Heckert
  • Kayla K Umemoto
  • Claire Dugast-Darzacq
  • Xavier Darzacq

California Institute for Regenerative Medicine (LA1-08013)

  • Anders S Hansen
  • Alec Basil Heckert
  • Xavier Darzacq

Howard Hughes Medical Institute (003061)

  • David Trombley McSwiggen
  • Anders S Hansen
  • Sheila S Teves
  • Yvonne Hao
  • Alec Basil Heckert
  • Kayla K Umemoto
  • Robert Tjian

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

© 2019, McSwiggen et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 14,837
    views
  • 2,420
    downloads
  • 242
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. David Trombley McSwiggen
  2. Anders S Hansen
  3. Sheila S Teves
  4. Hervé Marie-Nelly
  5. Yvonne Hao
  6. Alec Basil Heckert
  7. Kayla K Umemoto
  8. Claire Dugast-Darzacq
  9. Robert Tjian
  10. Xavier Darzacq
(2019)
Evidence for DNA-mediated nuclear compartmentalization distinct from phase separation
eLife 8:e47098.
https://doi.org/10.7554/eLife.47098

Share this article

https://doi.org/10.7554/eLife.47098

Further reading

    1. Chromosomes and Gene Expression
    Carlos Moreno-Yruela, Beat Fierz
    Insight

    Specialized magnetic beads that bind target proteins to a cryogenic electron microscopy grid make it possible to study the structure of protein complexes from dilute samples.

    1. Chromosomes and Gene Expression
    Carmina Lichauco, Eric J Foss ... Antonio Bedalov
    Research Article

    The association between late replication timing and low transcription rates in eukaryotic heterochromatin is well known, yet the specific mechanisms underlying this link remain uncertain. In Saccharomyces cerevisiae, the histone deacetylase Sir2 is required for both transcriptional silencing and late replication at the repetitive ribosomal DNA (rDNA) arrays. We have previously reported that in the absence of SIR2, a de-repressed RNA PolII repositions MCM replicative helicases from their loading site at the ribosomal origin, where they abut well-positioned, high-occupancy nucleosomes, to an adjacent region with lower nucleosome occupancy. By developing a method that can distinguish activation of closely spaced MCM complexes, here we show that the displaced MCMs at rDNA origins have increased firing propensity compared to the nondisplaced MCMs. Furthermore, we found that both activation of the repositioned MCMs and low occupancy of the adjacent nucleosomes critically depend on the chromatin remodeling activity of FUN30. Our study elucidates the mechanism by which Sir2 delays replication timing, and it demonstrates, for the first time, that activation of a specific replication origin in vivo relies on the nucleosome context shaped by a single chromatin remodeler.