1. Microbiology and Infectious Disease
  2. Physics of Living Systems
Download icon

Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection

  1. Alberto Brandariz-Nuñez
  2. Ting Liu
  3. Te Du
  4. Alex Evilevitch  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Carnegie Mellon University, United States
  3. The University of Chicago, United States
Research Article
  • Cited 0
  • Views 344
  • Annotations
Cite this article as: eLife 2019;8:e47212 doi: 10.7554/eLife.47212

Abstract

Many viruses previously have been shown to have pressurized genomes inside their viral protein shell, termed the capsid. This pressure results from the tight confinement of negatively charged viral nucleic acids inside the capsid. However, the relevance of capsid pressure to viral infection has not been demonstrated. In this work, we show that the internal DNA pressure of tens of atmospheres inside a herpesvirus capsid powers ejection of the viral genome into a host cell nucleus. To our knowledge, this provides the first demonstration of a pressure-dependent mechanism of viral genome penetration into a host nucleus, leading to infection of eukaryotic cells.

Article and author information

Author details

  1. Alberto Brandariz-Nuñez

    Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ting Liu

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Te Du

    The Marjorie B Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex Evilevitch

    Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    alexe@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0245-9574

Funding

National Science Foundation (CHE-1507694)

  • Alex Evilevitch

Vetenskapsrådet (621-2014-5537)

  • Alex Evilevitch

Vetenskapsrådet (349- 2014-3962)

  • Alex Evilevitch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William Gelbart, UCLA, United States

Publication history

  1. Received: March 28, 2019
  2. Accepted: August 4, 2019
  3. Accepted Manuscript published: August 8, 2019 (version 1)

Copyright

© 2019, Brandariz-Nuñez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 344
    Page views
  • 81
    Downloads
  • 0
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Download citations (links to download the citations from this article in formats compatible with various reference manager tools)

Open citations (links to open the citations from this article in various online reference manager services)

Further reading

    1. Microbiology and Infectious Disease
    Ting Pan et al.
    Research Article Updated
    1. Immunology and Inflammation
    2. Microbiology and Infectious Disease
    Lu Yu et al.
    Research Article