Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection

  1. Alberto Brandariz-Nuñez
  2. Ting Liu
  3. Te Du
  4. Alex Evilevitch  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Carnegie Mellon University, United States
  3. The University of Chicago, United States

Abstract

Many viruses previously have been shown to have pressurized genomes inside their viral protein shell, termed the capsid. This pressure results from the tight confinement of negatively charged viral nucleic acids inside the capsid. However, the relevance of capsid pressure to viral infection has not been demonstrated. In this work, we show that the internal DNA pressure of tens of atmospheres inside a herpesvirus capsid powers ejection of the viral genome into a host cell nucleus. To our knowledge, this provides the first demonstration of a pressure-dependent mechanism of viral genome penetration into a host nucleus, leading to infection of eukaryotic cells.

Data availability

All data is provided within the text and supplemental material

Article and author information

Author details

  1. Alberto Brandariz-Nuñez

    Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ting Liu

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Te Du

    The Marjorie B Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex Evilevitch

    Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    alexe@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0245-9574

Funding

National Science Foundation (CHE-1507694)

  • Alex Evilevitch

Vetenskapsrådet (621-2014-5537)

  • Alex Evilevitch

Vetenskapsrådet (349- 2014-3962)

  • Alex Evilevitch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William Gelbart, UCLA, United States

Version history

  1. Received: March 28, 2019
  2. Accepted: August 4, 2019
  3. Accepted Manuscript published: August 8, 2019 (version 1)
  4. Version of Record published: August 27, 2019 (version 2)
  5. Version of Record updated: October 1, 2019 (version 3)

Copyright

© 2019, Brandariz-Nuñez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,381
    views
  • 383
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alberto Brandariz-Nuñez
  2. Ting Liu
  3. Te Du
  4. Alex Evilevitch
(2019)
Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection
eLife 8:e47212.
https://doi.org/10.7554/eLife.47212

Share this article

https://doi.org/10.7554/eLife.47212

Further reading

    1. Microbiology and Infectious Disease
    Hideo Fukuhara, Kohei Yumoto ... Katsumi Maenaka
    Research Article

    Canine distemper virus (CDV) belongs to morbillivirus, including measles virus (MeV) and rinderpest virus, which causes serious immunological and neurological disorders in carnivores, including dogs and rhesus monkeys, as recently reported, but their vaccines are highly effective. The attachment glycoprotein hemagglutinin (CDV-H) at the CDV surface utilizes signaling lymphocyte activation molecule (SLAM) and Nectin-4 (also called poliovirus-receptor-like-4; PVRL4) as entry receptors. Although fusion models have been proposed, the molecular mechanism of morbillivirus fusion entry is poorly understood. Here, we determined the crystal structure of the globular head domain of CDV-H vaccine strain at 3.2 Å resolution, revealing that CDV-H exhibits a highly tilted homodimeric form with a six-bladed β-propeller fold. While the predicted Nectin-4-binding site is well conserved with that of MeV-H, that of SLAM is similar but partially different, which is expected to contribute to host specificity. Five N-linked sugars covered a broad area of the CDV-H surface to expose receptor-binding sites only, supporting the effective production of neutralizing antibodies. These features are common to MeV-H, although the glycosylation sites are completely different. Furthermore, real-time observation using high-speed atomic force microscopy revealed highly mobile features of the CDV-H dimeric head via the connector region. These results suggest that sugar-shielded tilted homodimeric structure and dynamic conformational changes are common characteristics of morbilliviruses and ensure effective fusion entry and vaccination.

    1. Evolutionary Biology
    2. Microbiology and Infectious Disease
    Zachary H Williams, Alvaro Dafonte Imedio ... Welkin E Johnson
    Research Article

    HERV-K(HML-2), the youngest clade of human endogenous retroviruses (HERVs), includes many intact or nearly intact proviruses, but no replication competent HML-2 proviruses have been identified in humans. HML-2-related proviruses are present in other primates, including rhesus macaques, but the extent and timing of HML-2 activity in macaques remains unclear. We have identified 145 HML-2-like proviruses in rhesus macaques, including a clade of young, rhesus-specific insertions. Age estimates, intact ORFs, and insertional polymorphism of these insertions are consistent with recent or ongoing infectious activity in macaques. 106 of the proviruses form a clade characterized by an ~750 bp sequence between env and the 3' LTR, derived from an ancient recombination with a HERV-K(HML-8)-related virus. This clade is found in Old World monkeys (OWM), but not great apes, suggesting it originated after the ape/OWM split. We identified similar proviruses in white-cheeked gibbons; the gibbon insertions cluster within the OWM recombinant clade, suggesting interspecies transmission from OWM to gibbons. The LTRs of the youngest proviruses have deletions in U3, which disrupt the Rec Response Element (RcRE), required for nuclear export of unspliced viral RNA. We show that the HML-8 derived region functions as a Rec-independent constitutive transport element (CTE), indicating the ancestral Rec-RcRE export system was replaced by a CTE mechanism.