Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection

  1. Alberto Brandariz-Nuñez
  2. Ting Liu
  3. Te Du
  4. Alex Evilevitch  Is a corresponding author
  1. University of Illinois at Urbana-Champaign, United States
  2. Carnegie Mellon University, United States
  3. The University of Chicago, United States

Abstract

Many viruses previously have been shown to have pressurized genomes inside their viral protein shell, termed the capsid. This pressure results from the tight confinement of negatively charged viral nucleic acids inside the capsid. However, the relevance of capsid pressure to viral infection has not been demonstrated. In this work, we show that the internal DNA pressure of tens of atmospheres inside a herpesvirus capsid powers ejection of the viral genome into a host cell nucleus. To our knowledge, this provides the first demonstration of a pressure-dependent mechanism of viral genome penetration into a host nucleus, leading to infection of eukaryotic cells.

Data availability

All data is provided within the text and supplemental material

Article and author information

Author details

  1. Alberto Brandariz-Nuñez

    Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, United States
    Competing interests
    The authors declare that no competing interests exist.
  2. Ting Liu

    Department of Physics, Carnegie Mellon University, Pittsburgh, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Te Du

    The Marjorie B Kovler Viral Oncology Laboratories, The University of Chicago, Chicago, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Alex Evilevitch

    Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, United States
    For correspondence
    alexe@illinois.edu
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0002-0245-9574

Funding

National Science Foundation (CHE-1507694)

  • Alex Evilevitch

Vetenskapsrådet (621-2014-5537)

  • Alex Evilevitch

Vetenskapsrådet (349- 2014-3962)

  • Alex Evilevitch

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. William Gelbart, UCLA, United States

Version history

  1. Received: March 28, 2019
  2. Accepted: August 4, 2019
  3. Accepted Manuscript published: August 8, 2019 (version 1)
  4. Version of Record published: August 27, 2019 (version 2)
  5. Version of Record updated: October 1, 2019 (version 3)

Copyright

© 2019, Brandariz-Nuñez et al.

This article is distributed under the terms of the Creative Commons Attribution License permitting unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 3,364
    views
  • 382
    downloads
  • 42
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Alberto Brandariz-Nuñez
  2. Ting Liu
  3. Te Du
  4. Alex Evilevitch
(2019)
Pressure-driven release of viral genome into a host nucleus is a mechanism leading to herpes infection
eLife 8:e47212.
https://doi.org/10.7554/eLife.47212

Share this article

https://doi.org/10.7554/eLife.47212

Further reading

    1. Microbiology and Infectious Disease
    Swagata Bose, Satya Ranjan Sahu ... Narottam Acharya
    Research Article

    Despite current antifungal therapy, invasive candidiasis causes >40% mortality in immunocompromised individuals. Therefore, developing an antifungal vaccine is a priority. Here, we could for the first time successfully attenuate the virulence of Candida albicans by treating it with a fungistatic dosage of EDTA and demonstrate it to be a potential live whole cell vaccine by using murine models of systemic candidiasis. EDTA inhibited the growth and biofilm formation of C. albicans. RNA-seq analyses of EDTA-treated cells (CAET) revealed that genes mostly involved in metal homeostasis and ribosome biogenesis were up- and down-regulated, respectively. Consequently, a bulky cell wall with elevated levels of mannan and β-glucan, and reduced levels of total monosomes and polysomes were observed. CAET was eliminated faster than the untreated strain (Ca) as found by differential fungal burden in the vital organs of the mice. Higher monocytes, granulocytes, and platelet counts were detected in Ca- vs CAET-challenged mice. While hyper-inflammation and immunosuppression caused the killing of Ca-challenged mice, a critical balance of pro- and anti-inflammatory cytokines-mediated immune responses are the likely reasons for the protective immunity in CAET-infected mice.

    1. Microbiology and Infectious Disease
    Tomoko Kubori, Kohei Arasaki ... Hiroki Nagai
    Research Article

    Rab GTPases are representative targets of manipulation by intracellular bacterial pathogens for hijacking membrane trafficking. Legionella pneumophila recruits many Rab GTPases to its vacuole and exploits their activities. Here, we found that infection-associated regulation of Rab10 dynamics involves ubiquitin signaling cascades mediated by the SidE and SidC families of Legionella ubiquitin ligases. Phosphoribosyl-ubiquitination of Rab10 catalyzed by the SidE ligases is crucial for its recruitment to the bacterial vacuole. SdcB, the previously uncharacterized SidC-family effector, resides on the vacuole and contributes to retention of Rab10 at the late stages of infection. We further identified MavC as a negative regulator of SdcB. By the transglutaminase activity, MavC crosslinks ubiquitin to SdcB and suppresses its function, resulting in elimination of Rab10 from the vacuole. These results demonstrate that the orchestrated actions of many L. pneumophila effectors fine-tune the dynamics of Rab10 during infection.