T Cell Activation: The importance of methionine metabolism

T helper cells import methionine to synthesize new proteins and to provide the methyl groups needed for the methylation of RNA and DNA that drives T cell proliferation and differentiation.
  • Download
  • Cite
  • CommentOpen annotations (there are currently 0 annotations on this page).
  1. Ramon I Klein Geltink
  2. Erika L Pearce  Is a corresponding author
  1. Max Planck Institute of Immunobiology and Epigenetics, Germany

The immune system relies on a number of different cells types that work together to detect and clear unwanted infections from the body. T helper cells (also known as CD4+ T cells, and hereafter referred to as T cells) play an important role in this process as they modulate the activity of the immune cells that rid the body of infections. Antigens on the surface of infected cells can activate different subpopulations of T cells by binding to antigen-specific receptors on the surface of the T cells (Figure 1). Once activated, the T cells proliferate rapidly and work together to mediate the immune response against the antigen.

Methionine and T cells.

When T cells recognize an antigen (red triangles; top left) they become activated and expand in both number and size. This expansion is dependent on the essential amino acid methionine (green …

This rapid expansion of T cells is, however, metabolically taxing because DNA, proteins and other biomolecules have to be produced prior to every division of the cells. The synthesis of new proteins during this period relies on the T cells importing the essential amino acid methionine. In addition to its role in protein synthesis, methionine can also enter the 'methionine cycle' and be converted into s-adenosylmethionine (SAM), which provides methyl groups for numerous biochemical reactions.

SAM is a substrate for methyltransferase enzymes that are involved in the methylation of many different molecules (see Figure 1). The addition of a methyl group to a histone protein, for example, can alter gene transcription (Allis and Jenuwein, 2016); the methylation of other proteins influences processes such as signal transduction and metabolism (Murn and Shi, 2017); and the methylation of RNA can have a significant influence on gene expression (Zhao et al., 2017). Now, in eLife, Linda Sinclair and Doreen Cantrell, both at the University of Dundee, and co-workers at Dundee, Vanderbilt University and Duke University report that in addition to importing methionine for protein synthesis, activated T cells use it to generate the methyl groups needed for the methylation of DNA and RNA – processes that drive the differentiation and proliferation of T cells (Sinclair et al., 2019).

Using high-resolution mass spectrometry and metabolic labeling, Sinclair et al. showed that the activation of T cells by antigens led to a rapid upregulation of a methionine transporter called Slc7a5. The antigen activation of T cells also led to a marked increase in methyltransferases: however, the ability of these enzymes to methylate DNA, RNA or a protein depends on the availability of SAM. Since the expression of the enzymes that control the level of SAM do not change as a result of T cell activation, Sinclair et al. conclude that the import of methionine through Slc7a5 is the rate-limiting factor for the generation of methyl groups during T cell activation.

The expression of receptors for IL2 – a growth factor that drives proliferation of T cells – is also increased in response to antigen engagement with T cell receptors. Sinclair et al. observed that IL2 receptors were still upregulated even in the absence of methionine or the methionine transporter. This suggests that activation signals prepare cells to utilize extracellular methionine, but that the rapid upregulation of Slc7a5 and import of methionine is needed for the full activation of T cells.

Previous studies have shown that two other proteins – the protein kinase mTOR, which is involved ribosome biogenesis, protein translation and a number of other processes (Sabatini, 2017); and the transcription factor Myc – have important roles in regulating metabolism in T cells (Powell et al., 2012; MacIver et al., 2013), as does the upregulation of the nutrient transporters that import key metabolic building blocks such as glutamine and leucine. The fact that the activation of mTOR also enhances the expression of Myc and an amino acid transporter called CD98 illustrates the close connections between metabolic reprogramming and amino acid availability in immune cells (Wang et al., 2011; Sinclair et al., 2013). Sinclair et al. also showed that mTOR is partially dependent on the import of methionine to drive protein synthesis and fully activate the T cells.

It was also know that Slc7a5 imports leucine (in addition to importing methionine), and that the absence of either of these amino acids in the T cell leads to suboptimal activation of mTOR. It is possible that the need for multiple metabolites to support differentiation and proliferation may be a way of preventing T cells being activated when they should not be. Given recent advances in single-cell analysis it is conceivable that researchers might one day be able to measure changes in the epigenome (and also the transcriptome, proteome, acetylome and methylome) of T cells and combine these results with measurements of the flux through metabolic pathways to better understand the dynamic changes in T cells that underlie immune function. While aspects of the study by Sinclair et al. highlight the complexity of the metabolic reprogramming that T cells undergo during activation and differentiation, it also moves the field forward by establishing how the essential amino acid methionine supports T cell function. Precisely how levels of dietary methionine will contribute to methionine uptake by T cells – and whether those levels are modulated during infection, cancer or autoimmunity to influence T cell responses – is not yet known and will require further study.

References

Article and author information

Author details

  1. Ramon I Klein Geltink

    Ramon I Klein Geltink is in the Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany

    Competing interests
    No competing interests declared
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-4610-3059
  2. Erika L Pearce

    Erika L Pearce is in the Department of Immunometabolism, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany

    For correspondence
    pearce@ie-freiburg.mpg.de
    Competing interests
    is an SAB member for Immunomet and a Founder of Rheos Medicines
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5592-5439

Publication history

  1. Version of Record published:

Copyright

© 2019, Klein Geltink and Pearce

This article is distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use and redistribution provided that the original author and source are credited.

Metrics

  • 5,131
    views
  • 592
    downloads
  • 32
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

  1. Further reading

Further reading

    1. Immunology and Inflammation
    2. Medicine
    Angela L Rachubinski, Elizabeth Wallace ... Joaquín M Espinosa
    Research Article

    Background:

    Individuals with Down syndrome (DS), the genetic condition caused by trisomy 21 (T21), display clear signs of immune dysregulation, including high rates of autoimmunity and severe complications from infections. Although it is well established that T21 causes increased interferon responses and JAK/STAT signaling, elevated autoantibodies, global immune remodeling, and hypercytokinemia, the interplay between these processes, the clinical manifestations of DS, and potential therapeutic interventions remain ill defined.

    Methods:

    We report a comprehensive analysis of immune dysregulation at the clinical, cellular, and molecular level in hundreds of individuals with DS, including autoantibody profiling, cytokine analysis, and deep immune mapping. We also report the interim analysis of a Phase II clinical trial investigating the safety and efficacy of the JAK inhibitor tofacitinib through multiple clinical and molecular endpoints.

    Results:

    We demonstrate multi-organ autoimmunity of pediatric onset concurrent with unexpected autoantibody-phenotype associations in DS. Importantly, constitutive immune remodeling and hypercytokinemia occur from an early age prior to autoimmune diagnoses or autoantibody production. Analysis of the first 10 participants to complete 16 weeks of tofacitinib treatment shows a good safety profile and no serious adverse events. Treatment reduced skin pathology in alopecia areata, psoriasis, and atopic dermatitis, while decreasing interferon scores, cytokine scores, and levels of pathogenic autoantibodies without overt immune suppression.

    Conclusions:

    JAK inhibition is a valid strategy to treat autoimmune conditions in DS. Additional research is needed to define the effects of JAK inhibition on the broader developmental and clinical hallmarks of DS.

    Funding:

    NIAMS, Global Down Syndrome Foundation.

    Clinical trial number:

    NCT04246372.

    1. Immunology and Inflammation
    Miki Kume, Hanako Koguchi-Yoshioka ... Rei Watanabe
    Research Article

    Psoriasis is a multifactorial disorder mediated by IL-17-producing T cells, involving immune cells and skin-constituting cells. Semaphorin 4A (Sema4A), an immune semaphorin, is known to take part in T helper type 1/17 differentiation and activation. However, Sema4A is also crucial for maintaining peripheral tissue homeostasis and its involvement in skin remains unknown. Here, we revealed that while Sema4A expression was pronounced in psoriatic blood lymphocytes and monocytes, it was downregulated in the keratinocytes of both psoriatic lesions and non-lesions compared to controls. Imiquimod application induced more severe dermatitis in Sema4A knockout (KO) mice compared to wild-type (WT) mice. The naïve skin of Sema4A KO mice showed increased T cell infiltration and IL-17A expression along with thicker epidermis and distinct cytokeratin expression compared to WT mice, which are hallmarks of psoriatic non-lesions. Analysis of bone marrow chimeric mice suggested that Sema4A expression in keratinocytes plays a regulatory role in imiquimod-induced dermatitis. The epidermis of psoriatic non-lesion and Sema4A KO mice demonstrated mTOR complex 1 upregulation, and the application of mTOR inhibitors reversed the skewed expression of cytokeratins in Sema4A KO mice. Conclusively, Sema4A-mediated signaling cascades can be triggers for psoriasis and targets in the treatment and prevention of psoriasis.