Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior

  1. Debanjan Goswami
  2. De Chen
  3. Yue Yang
  4. Prabhakar R Gudla
  5. John Columbus
  6. Karen Worthy
  7. Megan Rigby
  8. Madeline Wheeler
  9. Suman Mukhopadhyay
  10. Katie Powell
  11. William Burgan
  12. Vanessa Wall
  13. Dominic Esposito
  14. Dhirendra Simanshu
  15. Felice C Lightstone
  16. Dwight V Nissley
  17. Frank McCormick
  18. Thomas Turbyville  Is a corresponding author
  1. Frederick National Laboratory for Cancer Research, United States
  2. Lawrence Livermore National Laboratory, United States
  3. University of California, San Francisco, United States

Abstract

The RAS proteins are GTP-dependent switches that regulate signaling pathways and are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-tethers and hypervariable side-chain interactions in distinct nano-domains. However, little is known about RAS membrane dynamics and the details of RAS activation of downstream signaling. Here we characterize RAS in live human and mouse cells using single molecule tracking methods and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the amino acid differences between RAS isoforms lie within the hypervariable region, the additional confinement of KRAS4b is largely determined by the protein's globular domain. To understand the altered mobility of an oncogenic KRAS4b we used complementary experimental and molecular dynamic simulation approaches to reveal a detailed mechanism.

Data availability

For the molecular dynamic simulations, trajectories and inputs have been provided on the webpage at https://bbs.llnl.gov/KRAS4b-simulation-data.html.For the images, we will access a suitable repository, and make the data freely available.

Article and author information

Author details

  1. Debanjan Goswami

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5910-3811
  2. De Chen

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yue Yang

    Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Prabhakar R Gudla

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John Columbus

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Karen Worthy

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Megan Rigby

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Madeline Wheeler

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Suman Mukhopadhyay

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Katie Powell

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. William Burgan

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vanessa Wall

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Dominic Esposito

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Dhirendra Simanshu

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Felice C Lightstone

    Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1465-426X
  16. Dwight V Nissley

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Frank McCormick

    UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Thomas Turbyville

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    For correspondence
    turbyvillet@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2638-9520

Funding

National Cancer Institute (NIH Contract HHSN261200800001E)

  • De Chen
  • Prabhakar R Gudla
  • John Columbus
  • Karen Worthy
  • Megan Rigby
  • Suman Mukhopadhyay
  • Katie Powell
  • William Burgan
  • Vanessa Wall
  • Dominic Esposito
  • Dhirendra Simanshu
  • Dwight V Nissley
  • Thomas Turbyville

U.S. Department of Energy (Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-771099-DRAFT)

  • Yue Yang
  • Felice C Lightstone

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,746
    views
  • 420
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debanjan Goswami
  2. De Chen
  3. Yue Yang
  4. Prabhakar R Gudla
  5. John Columbus
  6. Karen Worthy
  7. Megan Rigby
  8. Madeline Wheeler
  9. Suman Mukhopadhyay
  10. Katie Powell
  11. William Burgan
  12. Vanessa Wall
  13. Dominic Esposito
  14. Dhirendra Simanshu
  15. Felice C Lightstone
  16. Dwight V Nissley
  17. Frank McCormick
  18. Thomas Turbyville
(2020)
Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior
eLife 9:e47654.
https://doi.org/10.7554/eLife.47654

Share this article

https://doi.org/10.7554/eLife.47654

Further reading

    1. Cancer Biology
    2. Cell Biology
    Ida Marie Boisen, Nadia Krarup Knudsen ... Martin Blomberg Jensen
    Research Article

    Testicular microcalcifications consist of hydroxyapatite and have been associated with an increased risk of testicular germ cell tumors (TGCTs) but are also found in benign cases such as loss-of-function variants in the phosphate transporter SLC34A2. Here, we show that fibroblast growth factor 23 (FGF23), a regulator of phosphate homeostasis, is expressed in testicular germ cell neoplasia in situ (GCNIS), embryonal carcinoma (EC), and human embryonic stem cells. FGF23 is not glycosylated in TGCTs and therefore cleaved into a C-terminal fragment which competitively antagonizes full-length FGF23. Here, Fgf23 knockout mice presented with marked calcifications in the epididymis, spermatogenic arrest, and focally germ cells expressing the osteoblast marker Osteocalcin (gene name: Bglap, protein name). Moreover, the frequent testicular microcalcifications in mice with no functional androgen receptor and lack of circulating gonadotropins are associated with lower Slc34a2 and higher Bglap/Slc34a1 (protein name: NPT2a) expression compared with wild-type mice. In accordance, human testicular specimens with microcalcifications also have lower SLC34A2 and a subpopulation of germ cells express phosphate transporter NPT2a, Osteocalcin, and RUNX2 highlighting aberrant local phosphate handling and expression of bone-specific proteins. Mineral disturbance in vitro using calcium or phosphate treatment induced deposition of calcium phosphate in a spermatogonial cell line and this effect was fully rescued by the mineralization inhibitor pyrophosphate. In conclusion, testicular microcalcifications arise secondary to local alterations in mineral homeostasis, which in combination with impaired Sertoli cell function and reduced levels of mineralization inhibitors due to high alkaline phosphatase activity in GCNIS and TGCTs facilitate osteogenic-like differentiation of testicular cells and deposition of hydroxyapatite.

    1. Cancer Biology
    Qianqian Ju, Wenjing Sheng ... Cheng Sun
    Research Article

    TAK1 is a serine/threonine protein kinase that is a key regulator in a wide variety of cellular processes. However, the functions and mechanisms involved in cancer metastasis are still not well understood. Here, we found that TAK1 knockdown promoted esophageal squamous cancer carcinoma (ESCC) migration and invasion, whereas TAK1 overexpression resulted in the opposite outcome. These in vitro findings were recapitulated in vivo in a xenograft metastatic mouse model. Mechanistically, co-immunoprecipitation and mass spectrometry demonstrated that TAK1 interacted with phospholipase C epsilon 1 (PLCE1) and phosphorylated PLCE1 at serine 1060 (S1060). Functional studies revealed that phosphorylation at S1060 in PLCE1 resulted in decreased enzyme activity, leading to the repression of phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis. As a result, the degradation products of PIP2 including diacylglycerol (DAG) and inositol IP3 were reduced, which thereby suppressed signal transduction in the axis of PKC/GSK-3β/β-Catenin. Consequently, expression of cancer metastasis-related genes was impeded by TAK1. Overall, our data indicate that TAK1 plays a negative role in ESCC metastasis, which depends on the TAK1-induced phosphorylation of PLCE1 at S1060.