Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior

  1. Debanjan Goswami
  2. De Chen
  3. Yue Yang
  4. Prabhakar R Gudla
  5. John Columbus
  6. Karen Worthy
  7. Megan Rigby
  8. Madeline Wheeler
  9. Suman Mukhopadhyay
  10. Katie Powell
  11. William Burgan
  12. Vanessa Wall
  13. Dominic Esposito
  14. Dhirendra Simanshu
  15. Felice C Lightstone
  16. Dwight V Nissley
  17. Frank McCormick
  18. Thomas Turbyville  Is a corresponding author
  1. Frederick National Laboratory for Cancer Research, United States
  2. Lawrence Livermore National Laboratory, United States
  3. University of California, San Francisco, United States

Abstract

The RAS proteins are GTP-dependent switches that regulate signaling pathways and are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-tethers and hypervariable side-chain interactions in distinct nano-domains. However, little is known about RAS membrane dynamics and the details of RAS activation of downstream signaling. Here we characterize RAS in live human and mouse cells using single molecule tracking methods and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the amino acid differences between RAS isoforms lie within the hypervariable region, the additional confinement of KRAS4b is largely determined by the protein's globular domain. To understand the altered mobility of an oncogenic KRAS4b we used complementary experimental and molecular dynamic simulation approaches to reveal a detailed mechanism.

Data availability

For the molecular dynamic simulations, trajectories and inputs have been provided on the webpage at https://bbs.llnl.gov/KRAS4b-simulation-data.html.For the images, we will access a suitable repository, and make the data freely available.

Article and author information

Author details

  1. Debanjan Goswami

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5910-3811
  2. De Chen

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yue Yang

    Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Prabhakar R Gudla

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John Columbus

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Karen Worthy

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Megan Rigby

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Madeline Wheeler

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Suman Mukhopadhyay

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Katie Powell

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. William Burgan

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vanessa Wall

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Dominic Esposito

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Dhirendra Simanshu

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Felice C Lightstone

    Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1465-426X
  16. Dwight V Nissley

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Frank McCormick

    UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Thomas Turbyville

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    For correspondence
    turbyvillet@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2638-9520

Funding

National Cancer Institute (NIH Contract HHSN261200800001E)

  • De Chen
  • Prabhakar R Gudla
  • John Columbus
  • Karen Worthy
  • Megan Rigby
  • Suman Mukhopadhyay
  • Katie Powell
  • William Burgan
  • Vanessa Wall
  • Dominic Esposito
  • Dhirendra Simanshu
  • Dwight V Nissley
  • Thomas Turbyville

U.S. Department of Energy (Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-771099-DRAFT)

  • Yue Yang
  • Felice C Lightstone

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 2,677
    views
  • 415
    downloads
  • 25
    citations

Views, downloads and citations are aggregated across all versions of this paper published by eLife.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debanjan Goswami
  2. De Chen
  3. Yue Yang
  4. Prabhakar R Gudla
  5. John Columbus
  6. Karen Worthy
  7. Megan Rigby
  8. Madeline Wheeler
  9. Suman Mukhopadhyay
  10. Katie Powell
  11. William Burgan
  12. Vanessa Wall
  13. Dominic Esposito
  14. Dhirendra Simanshu
  15. Felice C Lightstone
  16. Dwight V Nissley
  17. Frank McCormick
  18. Thomas Turbyville
(2020)
Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior
eLife 9:e47654.
https://doi.org/10.7554/eLife.47654

Share this article

https://doi.org/10.7554/eLife.47654

Further reading

    1. Cancer Biology
    2. Computational and Systems Biology
    Rosalyn W Sayaman, Masaru Miyano ... Mark A LaBarge
    Research Article Updated

    Effects from aging in single cells are heterogenous, whereas at the organ- and tissue-levels aging phenotypes tend to appear as stereotypical changes. The mammary epithelium is a bilayer of two major phenotypically and functionally distinct cell lineages: luminal epithelial and myoepithelial cells. Mammary luminal epithelia exhibit substantial stereotypical changes with age that merit attention because these cells are the putative cells-of-origin for breast cancers. We hypothesize that effects from aging that impinge upon maintenance of lineage fidelity increase susceptibility to cancer initiation. We generated and analyzed transcriptomes from primary luminal epithelial and myoepithelial cells from younger <30 (y)ears old and older >55 y women. In addition to age-dependent directional changes in gene expression, we observed increased transcriptional variance with age that contributed to genome-wide loss of lineage fidelity. Age-dependent variant responses were common to both lineages, whereas directional changes were almost exclusively detected in luminal epithelia and involved altered regulation of chromatin and genome organizers such as SATB1. Epithelial expression variance of gap junction protein GJB6 increased with age, and modulation of GJB6 expression in heterochronous co-cultures revealed that it provided a communication conduit from myoepithelial cells that drove directional change in luminal cells. Age-dependent luminal transcriptomes comprised a prominent signal that could be detected in bulk tissue during aging and transition into cancers. A machine learning classifier based on luminal-specific aging distinguished normal from cancer tissue and was highly predictive of breast cancer subtype. We speculate that luminal epithelia are the ultimate site of integration of the variant responses to aging in their surrounding tissue, and that their emergent phenotype both endows cells with the ability to become cancer-cells-of-origin and represents a biosensor that presages cancer susceptibility.

    1. Cancer Biology
    2. Chromosomes and Gene Expression
    Ananda Kishore Mukherjee, Subhajit Dutta ... Shantanu Chowdhury
    Research Article

    Telomeres are crucial for cancer progression. Immune signalling in the tumour microenvironment has been shown to be very important in cancer prognosis. However, the mechanisms by which telomeres might affect tumour immune response remain poorly understood. Here, we observed that interleukin-1 signalling is telomere-length dependent in cancer cells. Mechanistically, non-telomeric TRF2 (telomeric repeat binding factor 2) binding at the IL-1-receptor type-1 (IL1R1) promoter was found to be affected by telomere length. Enhanced TRF2 binding at the IL1R1 promoter in cells with short telomeres directly recruited the histone-acetyl-transferase (HAT) p300, and consequent H3K27 acetylation activated IL1R1. This altered NF-kappa B signalling and affected downstream cytokines like IL6, IL8, and TNF. Further, IL1R1 expression was telomere-sensitive in triple-negative breast cancer (TNBC) clinical samples. Infiltration of tumour-associated macrophages (TAM) was also sensitive to the length of tumour cell telomeres and highly correlated with IL1R1 expression. The use of both IL1 Receptor antagonist (IL1RA) and IL1R1 targeting ligands could abrogate M2 macrophage infiltration in TNBC tumour organoids. In summary, using TNBC cancer tissue (>90 patients), tumour-derived organoids, cancer cells, and xenograft tumours with either long or short telomeres, we uncovered a heretofore undeciphered function of telomeres in modulating IL1 signalling and tumour immunity.