Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior

  1. Debanjan Goswami
  2. De Chen
  3. Yue Yang
  4. Prabhakar R Gudla
  5. John Columbus
  6. Karen Worthy
  7. Megan Rigby
  8. Madeline Wheeler
  9. Suman Mukhopadhyay
  10. Katie Powell
  11. William Burgan
  12. Vanessa Wall
  13. Dominic Esposito
  14. Dhirendra Simanshu
  15. Felice C Lightstone
  16. Dwight V Nissley
  17. Frank McCormick
  18. Thomas Turbyville  Is a corresponding author
  1. Frederick National Laboratory for Cancer Research, United States
  2. Lawrence Livermore National Laboratory, United States
  3. University of California, San Francisco, United States

Abstract

The RAS proteins are GTP-dependent switches that regulate signaling pathways and are frequently mutated in cancer. RAS proteins concentrate in the plasma membrane via lipid-tethers and hypervariable side-chain interactions in distinct nano-domains. However, little is known about RAS membrane dynamics and the details of RAS activation of downstream signaling. Here we characterize RAS in live human and mouse cells using single molecule tracking methods and estimate RAS mobility parameters. KRAS4b exhibits confined mobility with three diffusive states distinct from the other RAS isoforms (KRAS4a, NRAS, and HRAS); and although most of the amino acid differences between RAS isoforms lie within the hypervariable region, the additional confinement of KRAS4b is largely determined by the protein's globular domain. To understand the altered mobility of an oncogenic KRAS4b we used complementary experimental and molecular dynamic simulation approaches to reveal a detailed mechanism.

Data availability

For the molecular dynamic simulations, trajectories and inputs have been provided on the webpage at https://bbs.llnl.gov/KRAS4b-simulation-data.html.For the images, we will access a suitable repository, and make the data freely available.

Article and author information

Author details

  1. Debanjan Goswami

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0001-5910-3811
  2. De Chen

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  3. Yue Yang

    Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
    Competing interests
    The authors declare that no competing interests exist.
  4. Prabhakar R Gudla

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  5. John Columbus

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  6. Karen Worthy

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  7. Megan Rigby

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  8. Madeline Wheeler

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  9. Suman Mukhopadhyay

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  10. Katie Powell

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  11. William Burgan

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  12. Vanessa Wall

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  13. Dominic Esposito

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  14. Dhirendra Simanshu

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  15. Felice C Lightstone

    Biosciences and Biotechnology Division, Lawrence Livermore National Laboratory, Livermore, United States
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-1465-426X
  16. Dwight V Nissley

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    Competing interests
    The authors declare that no competing interests exist.
  17. Frank McCormick

    UCSF Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, United States
    Competing interests
    The authors declare that no competing interests exist.
  18. Thomas Turbyville

    RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, United States
    For correspondence
    turbyvillet@mail.nih.gov
    Competing interests
    The authors declare that no competing interests exist.
    ORCID icon "This ORCID iD identifies the author of this article:" 0000-0003-2638-9520

Funding

National Cancer Institute (NIH Contract HHSN261200800001E)

  • De Chen
  • Prabhakar R Gudla
  • John Columbus
  • Karen Worthy
  • Megan Rigby
  • Suman Mukhopadhyay
  • Katie Powell
  • William Burgan
  • Vanessa Wall
  • Dominic Esposito
  • Dhirendra Simanshu
  • Dwight V Nissley
  • Thomas Turbyville

U.S. Department of Energy (Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-JRNL-771099-DRAFT)

  • Yue Yang
  • Felice C Lightstone

The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Reviewing Editor

  1. Roger J Davis, University of Massachusetts Medical School, United States

Publication history

  1. Received: April 12, 2019
  2. Accepted: January 2, 2020
  3. Accepted Manuscript published: January 20, 2020 (version 1)
  4. Version of Record published: March 6, 2020 (version 2)

Copyright

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Metrics

  • 1,924
    Page views
  • 324
    Downloads
  • 10
    Citations

Article citation count generated by polling the highest count across the following sources: Crossref, PubMed Central, Scopus.

Download links

A two-part list of links to download the article, or parts of the article, in various formats.

Downloads (link to download the article as PDF)

Open citations (links to open the citations from this article in various online reference manager services)

Cite this article (links to download the citations from this article in formats compatible with various reference manager tools)

  1. Debanjan Goswami
  2. De Chen
  3. Yue Yang
  4. Prabhakar R Gudla
  5. John Columbus
  6. Karen Worthy
  7. Megan Rigby
  8. Madeline Wheeler
  9. Suman Mukhopadhyay
  10. Katie Powell
  11. William Burgan
  12. Vanessa Wall
  13. Dominic Esposito
  14. Dhirendra Simanshu
  15. Felice C Lightstone
  16. Dwight V Nissley
  17. Frank McCormick
  18. Thomas Turbyville
(2020)
Membrane interactions of the globular domain and the hypervariable region of KRAS4b define its unique diffusion behavior
eLife 9:e47654.
https://doi.org/10.7554/eLife.47654

Further reading

    1. Cancer Biology
    2. Developmental Biology
    Maja Solman et al.
    Research Article Updated

    Gain-of-function mutations in the protein-tyrosine phosphatase SHP2 are the most frequently occurring mutations in sporadic juvenile myelomonocytic leukemia (JMML) and JMML-like myeloproliferative neoplasm (MPN) associated with Noonan syndrome (NS). Hematopoietic stem and progenitor cells (HSPCs) are the disease propagating cells of JMML. Here, we explored transcriptomes of HSPCs with SHP2 mutations derived from JMML patients and a novel NS zebrafish model. In addition to major NS traits, CRISPR/Cas9 knock-in Shp2D61G mutant zebrafish recapitulated a JMML-like MPN phenotype, including myeloid lineage hyperproliferation, ex vivo growth of myeloid colonies, and in vivo transplantability of HSPCs. Single-cell mRNA sequencing of HSPCs from Shp2D61G zebrafish embryos and bulk sequencing of HSPCs from JMML patients revealed an overlapping inflammatory gene expression pattern. Strikingly, an anti-inflammatory agent rescued JMML-like MPN in Shp2D61G zebrafish embryos. Our results indicate that a common inflammatory response was triggered in the HSPCs from sporadic JMML patients and syndromic NS zebrafish, which potentiated MPN and may represent a future target for JMML therapies.

    1. Cancer Biology
    2. Computational and Systems Biology
    Gökçe Senger et al.
    Research Article

    Aneuploidy, a state of chromosome imbalance, is a hallmark of human tumors, but its role in cancer still remains to be fully elucidated. To understand the consequences of whole-chromosome-level aneuploidies on the proteome, we integrated aneuploidy, transcriptomic and proteomic data from hundreds of TCGA/CPTAC tumor samples. We found a surprisingly large number of expression changes happened on other, non-aneuploid chromosomes. Moreover, we identified an association between those changes and co-complex members of proteins from aneuploid chromosomes. This co-abundance association is tightly regulated for aggregation-prone aneuploid proteins and those involved in a smaller number of complexes. On the other hand, we observe that complexes of the cellular core machinery are under functional selection to maintain their stoichiometric balance in aneuploid tumors. Ultimately, we provide evidence that those compensatory and functional maintenance mechanisms are established through post-translational control and that the degree of success of a tumor to deal with aneuploidy-induced stoichiometric imbalance impacts the activation of cellular protein degradation programs and patient survival.